
NASA/CR-1999-209347

Partitioning in

Requirements,

Avionics Architectures:

Mechanisms, and Assurance

John Rushby

SRI International, Menlo Park, California

June 1999

The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key
part in helping NASA maintain this important
role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for
NASA's scientific and technical information. The

NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA's institutional
mechanism for disseminating the results of its
research and development activities. These
results are published by NASA in the NASA STI
Report Series, which includes the following
report types:

TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed to

be of continuing reference value. NASA
counterpart of peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript length
and extent of graphic presentations.

TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary
or of specialized interest, e.g., quick release
reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive

analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

CONFERENCE PUBLICATION. Collected

papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by
NASA.

SPECIAL PUBLICATION. Scientific,
technical, or historical information from

NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to NASA's
mission.

Specialized services that complement the STI
Program Office's diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing research
results ... even providing videos.

For more information about the NASA STI

Program Office, see the following:

• Access the NASA STI Program Home Page
at http'//www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA STI Help
Desk at (301) 621-0134

• Phone the NASA STI Help Desk at
(301) 621-0390

Write to:

NASA STI Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076-1320

NASA/CR-1999-209347

Partitioning in

Requirements,

Avionics Architectures:

Mechanisms, and Assurance

John Rushby

SRI International, Menlo Park, California

National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

Prepared for Langley Research Center
under Contract NAS1-20334

June 1999

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute an
official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics

and Space Administration.

Available from:

NASA Center for AeroSpace Information (CASI)
7121 Standard Drive

Hanover, MD 21076-1320

(301) 621-0390

National Technical Information Service (NTIS)
5285 Port Royal Road

Springfield, VA 22161-2171
(703) 605-6000

Abstract

Automated aircraft control has traditionally been divided into distinct "func-

tions" that are implemented separately (e.g., autopilot, autothrottle, flight manage-

ment); each function has its own fault-tolerant computer system, and dependencies

among different functions are generally limited to the exchange of sensor and con-

trol data. A by-product of this "federated" architecture is that faults are strongly

contained within the computer system of the function where they occur and cannot

readily propagate to affect the operation of other functions.

More modern avionics architectures contemplate supporting multiple functions

on a single, shared, fault-tolerant computer system where natural fault containment

boundaries are less sharply defined. Partitioning uses appropriate hardware and

software mechanisms to restore strong fault containment to such integrated archi-
tectures.

This report examines the requirements for partitioning, mechanisms for their

realization, and issues in providing assurance for partitioning. Because partitioning

shares some concerns with computer security, security models are reviewed and

compared with the concerns of partitioning.

iii

Acknowledgments

I wish to acknowledge my deep appreciation for the support of Pete Saraceni of the

Flight Safety Research Branch of the FAA Technical Center, and Ricky Butler of

the NASA Langley Research Center. As often before, they provided encouragement

and excellent technical advice throughout preparation of this report, and displayed

stoic patience.

I am also very grateful to other researchers, and to engineers in several aerospace

companies, who took the time to explain their concerns and approaches to me. I

particularly benefited from extensive discussions with David Hardin, Dave Greve,

and Matt Wilding of Collins, with Kevin Driscoll and Aaron Larsen of Honeywell,

and with Hermann Kopetz of the Vienna Technical University. Ben di Vito of NASA

Langley provided excellent comments and posed taxing questions on a draft version

of this report.

iv

Contents

1 Motivation and Introduction 1

Informal Requirements 3

2.1 Integrated Modular Avionics 3

2.2 Partitioning 9

Issues and Mechanisms

3.1

3.2

3.3

13

Partitioning Within a Single Processor 13

3.1.1 Spatial Partitioning 13

3.1.2 Temporal Partitioning 21

Partitioning Across a Distributed System 30

Summary 35

Comparison With Computer Security 39
4.1 Data and Information Flow 39

4.1.1 Access Control 40

4.1.2 Noninterference 42

4.1.3 Separability 48

4.2 Integrity Policies 50

4.3 Timing Channels and Denial of Service 50

4.4 Application to Partitioning 52

5 Conclusion 55

References 57

v

List of Figures

2.1 Alternative Operating System/Partitioning Designs 7

3.1 Different Operating System Software for Different Partitions 30

4.1 Allowed Information Flows for an Encryption Controller 45

vi

Chapter 1

Motivation and Introduction

Digital flight-control functions in current aircraft are generally implemented by a

federated architecture in which each function (e.g., autopilot, flight management,

yaw damping, displays) has its own computer system that is only loosely coupled

to the computer systems of other functions. A great advantage of this architecture

is that fault containment is inherent: that is to say, a fault in the computer system

supporting one function, or in the software implementing that function, is unlikely

to propagate to other functions because there is very little that is shared across

the different functions. To be sure, some functions interact with others, but these

interactions are accomplished by the exchange of data, and functions can be designed

to detect and tolerate a faulty or erratic data source.

The obvious disadvantage to the federated approach is its profligate use of re-

sources: each function needs its own computer system (which is generally replicated

for fault tolerance), with all the attendant costs of acquisition, space, power, weight,

cooling, installation, and maintenance. Integrated Modular Avionics (IMA) has

therefore emerged as a design concept to challenge the federated architecture [1,77].

In IMA, a single computer system (with internal replication to provide fault tol-

erance) provides a common computing resource to several functions. As a shared

resource, IMA has the potential to diminish fault containment between functions:

for example, a faulty function might monopolize the computer or communications

system, denying service to all the other functions sharing that system, or it might

corrupt the memory of other functions, or send inappropriate commands to their

actuators. It is almost impossible for individual functions to protect themselves

against this kind of corruption to the computational resource on which they de-

pend, so any realization of IMA must provide partitioning to ensure that the shared

computer system provides protection against fault propagation from one function

to another that is equivalent to that which is inherent to the federated architecture.

The purpose of this report is to identify the requirements for partitioning in IMA

and to explore topics in achieving those requirements with very high assurance. The

Chapter 1. Motivation and Introduction

next chapter, therefore, is concerned with the general requirements for IMA and

partitioning, and the one following with issues in the implementation of IMA and

the mechanisms for partitioning. The discussion in these chapters is deliberately

more general than that in ARINC 651 ("Design Guidance for Integrated Modular

Avionics") [1]: the ARINC document reflects aircraft practice, whereas we take a

computer science perspective--in the hope that this will cast a new or different

light on the issues. For this reason, our terminology is also more generic (e.g., we

speak of processors and other basic components rather than line replaceable modules

(LRMs)), and so are the component properties that we consider (e.g., we consider

buses in general, not just avionic buses such as ARINC 629 [3]). In Chapter 4, we

consider methods developed for specifying and analyzing computer security policies,

since these share some concerns with partitioning, and have been the object of

considerable study. We end with conclusions and suggestions for future work.

Chapter 2

Informal Requirements

To gain insight into the requirements for partitioning, we first need to examine the

context provided by IMA and related developments in avionics.

2.1 Integrated Modular Avionics

It can be argued that the simplest interpretation of IMA envisions an architecture

that technology has already rendered obsolete: an embedded systems version of the

centralized time-shared "mainframe." Thanks to recent technological developments,

powerful processors, large memories, and high-bandwidth local communications are

all available as reliable and inexpensive commodity items, and these developments

surely favor less rather than more centralization. Thus, this argument proceeds,

a modern avionics architecture should be more, not less, federated, with existing

functions "deconstructed" into smaller components, each having its own processor.

There is some plausibility to this argument, but the distinction between the

"more federated" architecture and centralized IMA proves to be moot on closer

inspection. A federated architecture is one whose components are very loosely

coupled--meaning that they can operate largely independently. But the different

elements of a function--for example, vertical and horizontal flight path control in

an autopilot--usually are rather tightly coupled (and it is argued below that they

should become even more tightly coupled), so that the deconstructed function would

not be a federated system so much as a distributed one--meaning a system whose

components may be physically separated, but which must coordinate to achieve

some collective purpose. Dually, a centralized IMA architecture would not be a

simple mainframe--for a computer system supporting flight functions must provide

replicated and physically distributed hardware for fault tolerance, together with

mechanisms for redundancy management. Consequently, a conceptually centralized

architecture will be, internally, a distributed system, and the basic services that

3

4 Chapter 2. Informal Requirements

it provides will not differ in a significant way from those required for the "more
federated" architecture.

Another contrarian point of view is that neither centralized IMA nor the "more

federated" architecture offers significant benefits over current practice; the present

federated architecture has been validated by experience, and modern hardware tech-

nology will reduce its cost penalty--so there is no reason to change it. The argument

against this point of view is that it takes a very narrow interpretation of the costs

associated with the current architecture, and therefore grossly underestimates them.

One neglected cost is safety: the federated architecture has the advantage of natural

fault containment, but it imposes a cost in poorly coordinated control, and complex

and fault-prone pilot interfaces.

The current allocation of flight automation to separate functions is the result

of largely accidental historical factors. Consequently, certain control variables that

are tightly coupled in a dynamical sense are managed by different functions: for

example, engine thrust is managed by the autothrottle, and pitch angle by the

autopilot. Since a change in either of these variables affects the other, but there is no

higher-level function that manages them in a coordinated manner, such conceptually

simple services as "cruise speed control," "altitude select," and "vertical speed" have

complex and imperfect implementations that are difficult to manage. For example,

Lambregts [58, page 4] reports:

"Because the actions of the autothrottle are not tactically coordinated

with the autopilot, the autothrottle speed control constantly upsets the

autopilot flight path control and vice versa, resulting in a notorious cou-

pling problem familiar to every pilot. It manifests itself especially when

excited by turbulence or windshear, to the point where the tracking

performance and ride quality becomes unacceptable. The old remedy to

break the coupling was to change the autopilot mode to ALTITUDE HOLD

(e.g., the older B747-200/300). On newer airplanes, this problem has

been reduced to an acceptable level for the cruise operation after a very

difficult and costly development process, implementing provisions such

as separation of the control frequency by going to very low autothrottle

feedback gain, application of 'energy compensation,' turbulence compen-

sation, and nonlinear windshear detections/compensation."

And again:

"Due to the lack of proper control coordination, the autopilot
ALTITUDE SELECT and VERTICAL SPEED modes never functioned

satisfactorily.., these problems resulted in development of the FLIGHT

LEVEL CHANGE (FLC) mode that was first implemented on the

B757/B767... however the mode logic depends on certain assumptions

2.1. Integrated Modular Avionics 5

that are valid only for certain operations, so the logic can be tricked and

cause an incorrect or poorly coordinated control response.., as a result
there have been a number of incidents where the FLC mode did not

properly execute the pilot's command."

The lack of properly integrated control caused by the artificial separation of functions

in the federated architecture is one of the factors that leads to the complex modes

and submodes used in these functions, and thence to the "automation surprises"

and "mode confusions" that characterize problems in the "flightcrew-automation
interface." Numerous fatal crashes and other incidents are attributed to such hu-

man factors problems [27, Appendix D], but it is clear from their origins in the

artificial separation of functions that these problems are unlikely to be solved by

local improvements in the interfaces and cues presented to pilots. The plethora of

modes, submodes, and their corresponding interactions also exacts a high cost in

development, implementation, and certification. If this analysis is correct, the tra-

ditional federated architecture is a major obstacle to a more rational organization

of flight functions, and IMA is the best hope for removing this obstacle.

The topics considered so far suggest that the appropriate context in which to

examine partitioning for IMA is a distributed system in which flight functions (which

might well be defined and subdivided differently than in the traditional federated

architecture) are each allocated to separate processors (replicated as necessary for

fault tolerance). In this model, we would need to consider partitioning to limit fault

propagation between the processors supporting each function, but not within them.

This model, however, overlooks a new opportunity that could be created by more

fine-grained partitioning.

If functions have no internal partitioning, then all their software must be assured

and certified to the level appropriate for that function. Thus, all the software in an

autopilot function is likely to require assurance to Level A of DO-178B (this, the

highest level of DO-178B, the guidelines for certification of airborne software [29, 83],

is for software whose malfunction could contribute to a catastrophic failure condi-

tion [28]), and this discourages the inclusion of any software that is not strictly

essential to the function. While this may be a good thing in general, it also discour-

ages inclusion of services that could have a positive safety impact, such as continuous

self-test, or for-information-only messages to the pilot. More generally, partitioning

within a processor could allow an individual function to be divided into software

components of different criticalities; each could then be developed and certified to

the level appropriate to its criticality, thereby reducing overall costs while allowing

assurance effort to be focused on the most important areas. Without partitioning,

the concern that a fault in less critical software could have an impact on the oper-

ation of more critical software necessarily elevates the criticality of the first to that

of the second; partitioning would remove the danger of fault propagation, and allow

the criticality of each software component to be assessed more locally.

6 Chapter 2. Informal Requirements

The considerations of the previous paragraph suggest that for partitioning within

a single processor it might be appropriate to limit attention to the case where the

processor is shared by the components of only a single function. We might suppose

that these components consist of one implementing the main function, and several

others providing subsidiary services. Since a fault in the main component amounts

to a fault in (this replica of) the overall function, there seems little point in protect-

ing the subsidiary components from faults in the main component, and this suggests

that partitioning could be asymmetric (the main component is protected from the

subsidiary ones, but not vice versa). It is not clear whether such asymmetry would

provide any benefit in terms of simplicity or cost of the partitioning mechanisms,

but the point is probably moot since other scenarios require a symmetric approach.

One scenario is support for several minor functions, for example undercarriage and

weather radar, on a single processor. Where the functions are not required at the

same time, partitioning could perhaps be achieved by giving each one sole command

of its processor while it is active (this is similar to "periods processing" in the secu-

rity context), but the more general requirement is for simultaneous operation with

symmetric partitioning. The second scenario concerns very cost sensitive applica-

tions, such as single-engine general aviation aircraft. Here it may be desirable to run

multiple major functions (such as autopilot and rudimentary flight management) on

a single (possibly non-fault-tolerant) processor. There are even proposals to host

these functions on mass-market systems such as Windows NT. Although one can

be skeptical of this proposal (particularly if "free flight" air traffic control makes

flight management data from general aviation aircraft critical to overall airspace

safety), it seems worth examining the technical feasibility of symmetric partitioning

for critical functions within a single processor.

The current federated architecture not only uses a lot of computer systems,

it uses a lot of different computer systems: each function typically has its own

unique computer platform. There is a high cost associated with developing and

certifying software to run on these idiosyncratic platforms. Logically independent

of IMA, but coupled to it quite strongly in practice, are moves to define standardized

interfaces to the platforms that support flight functions, and to introduce some of

the abstractions and services provided by an operating system. The ARINC 653

(APEX) [4] standard represents a step in this direction. Developments such as

this could significantly reduce the cost of avionics software development and might

stimulate creation of standard modules for common tasks that could be reused by

different functions running on different platforms.

The design choices for partitioning interact with those for providing operat-

ing system services. The major decision is whether partitioning is provided above

an operating system layer (Figure 2.1(a)), or above a minimal kernel (or executive)

with most operating system services then provided separately in each partition (Fig-

ure 2.1(b)). The first choice is the way standard operating systems are structured

2.1. Integrated Modular Avionics 7

(with partitions being client processes), but it has the disadvantage that partition-

ing then relies on a great deal of operating system software. The second choice is

sometimes called the "virtual machine" approach, and it has the advantage that

partitioning relies only on the kernel and its supporting hardware. 1

Partition A Partition B

Operating System

Hardware

(a)

Partition A Partition B

OS Services A OS Services B

Kernel

Hardware

(b)

Figure 2.1: Alternative Operating System/Partitioning Designs

Another area where IMA has the potential to reduce costs is through improved

dispatch reliability. Critical flight functions must tolerate hardware faults, and so

they run on replicated hardware (typically quad-redundant or greater for primary

flight control and displays, triple for autopilot and autoland, dual for flight manage-

meat and yaw damping, and single for autothrottle). But despite the massive cost

of providing a fault-tolerant platform for each function, and despite the large num-

ber of separate processors and other components available (there can be as many

as 50 processors among the major functions of a large modern transport plane), the

federated architecture does not provide a large margin of redundancy, nor opera-

tional flexibility. A single faulty processor in any function may be enough to prevent

takeoff (thereby requiring maintenance in possibly less than ideal circumstances),

and multiple faults afflicting such a function during flight might trigger a diversion,

or have even more serious consequences. With IMA, in contrast, replicated proces-

sors are not bound to a specific function, but can be allocated as required: normal

operation can continue as long as the total number of nonfaulty processors is suf-

ficient to provide the required level of replication to each function. This increases

1Some operating systems use the second model. It was first employed in VM/370 [69], which
served as the basis for a major early secure system development [7,35]. Fully virtualizing the under-
lying hardware is expensive, so later "#-kernels" such as Mach and Chorus provided a more abstract
interface. These also proved to have disappointing performance. Second-generation #-kernels and
comparable toolkits such as Exokernel [48], Flux [31], L4 [38], and SPIN [11] achieve good per-
formance and introduce several implementation techniques relevant to the design of partitioned
systems.

8 Chapter 2. Informal Requirements

overall safety margins, while also allowing maintenance to be deferred (e.g., until

the aircraft's schedule brings it to a major maintenance base) [40]. 2

The ability to exploit this increased redundancy and flexibility depends on a

systematic approach to fault tolerance within functions (so that they are not tightly

bound to a specific processor), and across the distributed coordination mechanisms

of the IMA platform itself. Design of fault-tolerant systems is not only a massively

difficult and expensive activity (the basic mechanisms of fault tolerance concern the

coordination of distributed, real-time systems operating in the presence of faults,

which are among the hardest problems in computer science) but is often a pervasive

one: that is, mechanisms for fault tolerance and redundancy management in avionics

are seldom encapsulated as an operating system or middleware service, and instead

affect the design of every piece of software within the function. As a result, it is gen-

erally impossible to take software--or even the design for a piece of software--from

one function and reuse it in another, or on another platform, even when standards

such as APEX are used, for these standards concern only the mechanics of system

calls and do not address the deeper concerns of systematic and transparent fault

tolerance. Another reason for the pervasive influence of fault tolerance in current

system designs is that the these mechanisms (and most others that involve coordina-

tion across multiple processors and functions) are seldom compositional--meaning

that there is no a priori guarantee that elements that each work on their own will

also work in combination. The massive resources expended on systems integration

are a symptom of the lack of compositionality provided by current design practices.

Thus, full realization of the benefits of IMA requires adoption of modern concepts

for systematic, compositional, fault-tolerant real-time system design [54]. These

would reduce the pervasive impact of fault tolerance in avionics software devel-

opment and provide cost savings and opportunities for reuse that could be much

greater than those provided by lower-level standards such as APEX. Taken to their

conclusion, such approaches could completely decouple the implementation of flight

functions from that of their fault-tolerant platform, possibly enabling each to be

certified separately. The impact of such developments on partitioning is, first, a

requirement that the distributed partitioning mechanisms must themselves be ro-

bustly fault tolerant and, second, that these mechanisms must cooperate with oper-

ating system or kernel functions to provide the services required for systematic and

transparent fault tolerance in the implementations of flight functions.

Summarizing this review of issues in IMA, we see that partitioning should be

considered both within a single processor and across a distributed system, and that

partitioning has interactions with the provision of operating system services and

transparent fault tolerance. In the next section we examine the requirements for

partitioning a little more closely.

2Current implementations of IMA allocate functions to processors at startup time; reconfigura-
tion in flight is a future prospect.

2.2. Partitioning 9

2.2 Partitioning

The purpose of partitioning is fault containment: a failure in one partition must

not propagate to cause failure in another partition. However, we need to be careful

about what kinds of faults and failures are considered. The function in a partition

depends on the correct operation of its processor and associated peripherals, and

partitioning is not intended to protect against their failure--this can be achieved

only by replicating functions across multiple processors in a fault-tolerant manner.

After all, each function would be just as vulnerable to hardware failure if it had

its own processor. Rather, the intent of partitioning is to control the additional

hazard that is created when a function shares its processor (or, more generally, a

resource) with other functions. The additional hazard is that faults in the design

or implementation of one function may affect the operation of other functions that

share resources with it. 3 Now a design or implementation fault in a flight function is

surely a very serious event and it might be supposed that (a) such faults are so serious

that it does not matter what else goes wrong, or (b) certification ensures that such

faults cannot occur. Both suppositions would, if true, diminish the requirements for

partitioning.

The first point is easily refuted: the whole thrust of aircraft certification is to

ensure that failures are independent (and individually improbable) if their combi-

nation could be catastrophic. Thus, while a design fault in, say, the autothrottle

function would be serious, appropriate design and system-level hazard analysis will

ensure that it is not catastrophic, provided other functions do not fail at the same

time. Allowing a fault in this function to propagate to another (e.g., autoland)

would violate the assumption of independent failures. Thus, far from a fault in a

critical function being so serious as to render concern for partitioning irrelevant, it

is the need to contain the consequences of such a fault that renders partitioning

essential (and elevates its criticality to at least that of the most critical function

supported).

It could be argued that both functions will certainly be lost if their shared pro-

cessor fails, so they surely would not be sharing if their correlated failure could be

catastrophic. This overlooks a couple of points. First, malfunction or unintended

function is often more serious than simple loss of function, and the consequences of

a propagating fault (unlike those of a processor failure) may well be of these more

serious kinds. For example, a buffer overflow in one function might overwrite data

in another, leading to unpredictable consequences. (The Phobos I spacecraft was

lost in just this circumstance--when a keyboard buffer overflowed into the mem-

ory of a critical flight control function [14, 17].) Second, the increased interdepen-

dency wrought by IMA may introduce shared resources--and hence paths for fault

3Partitioning can also limit the consequences of transient hardware faults (by containing them
within the partition that is directly affected), but that is a side benefit, not a requirement.

10 Chapter 2. Informal Requirements

propagation--that are less obvious and more easily overlooked than shared proces-

sors. For example, functions in separate processors, where correlated failure would

not be anticipated (and would not occur in a federated architecture) might become

vulnerable to fault propagation through a shared bus in an IMA architecture.

Returning to the second point raised above (that certification ought to ensure

the absence of design and implementation faults), note that certification requires

assurance proportional to the consequences of failure. In a federated architecture,

such consequences are generally limited to the function concerned, so that assur-

ance is related to the criticality of that function. But if the failure of one function

could propagate to others, then a low-criticality (and correspondingly low assur-

ance) function might cause a high-criticality function to fail. This means that either
all functions that share resources must be assured to the level of the most critical

(such elevation in assurance levels is directly contrary to one of the goals of IMA),

or that partitioning must be used to eliminate fault propagation from low-assurance

functions to those of high criticality. When different functions already happen to

have the same level of assurance, the need for partitioning may not be so great, and

it has been suggested that functions with software assured to Level A of DO-178B

may be allowed to share resources without partitioning. Note, however, that a fault

that causes one function to induce a failure in another might not affect the operation

of the first (as noted above, a temporary buffer overflow can have this property).

And although certification requires assurance of the absence of such unintended ef-

fects, as well as positive assurance that the intended function is performed correctly,

it is generally much harder to provide the first kind of assurance than the second.

Furthermore, shared resources create new pathways for the propagation of unin-

tended effects, and these pathways might not have been considered when assurance

was developed for the individual functions. Consequently, partitioning seems advis-

able even when the functions concerned are of the same level of criticality, and all
software is assured to the same level.

Summarizing the discussion in this chapter, we may conclude that future avionics

architectures will have the character of distributed, rather than federated, systems,

and that multiple functions, of possibly different levels of criticality and assurance,

will be supported by the same system. Resources, such as processors, communi-

cations buses, and peripheral devices, may be shared between different functions.

Shared resources introduce new pathways for fault propagation, and these hazards

must be controlled by partitioning.

Because partitioning is required to prevent fault propagation through shared

resources, a suitable benchmark or "Gold Standard" for the effectiveness of parti-

tioning would seem to be a comparable system (intuitively a federated one) in which

there are no shared resources. This is captured in the following.

2.2. Partitioning 11

Gold Standard for Partitioning

A partitioned system should provide fault containment equivalent to an

idealized system in which each partition is allocated an independent pro-

cessor and associated peripherals, and all inter-partition communications
are carried on dedicated lines.

Although this Gold Standard provides a suitable mental benchmark for design-

ers and certifiers of partitioning mechanisms for IMA, it is less useful as a "con-

tract" with the "customers" of such mechanisms. These customers--that is, those

who develop software for the functions that will run in the partitions of an IMA

architecture--are assured that their software will be as well protected in a partition

as if it had its own dedicated system, but they are not provided with a concrete

environment in which to develop, test, and certify that software. The Gold Standard

implies that the environment provided by the partitioned system to a particular ap-

plication function must be indistinguishable from an idealized system dedicated to

that function alone, but this idealized system is just that--an imaginary artifact--

and not one suitable for testing and evaluating real-world software. The only en-

vironment actually available is the partitioned system itself, so its customers need

a contract expressed in terms of that environment. This can be done as follows: 4

instead of comparing the environment perceived by the software in a partition to

that of an idealized, dedicated system, we require that the environment (whatever

it is) is one that is totally unaffected by the behavior of software in other partitions.

This leads to the following alternative statement of our Gold Standard.

Alternative Gold Standard for Partitioning

The behavior and performance of software in one partition must be un-

affected by the software in other partitions.

This formulation is not only simpler and more direct than that involving an

idealized system, but it also suggests how the customers of a partitioned system

can develop and evaluate their software--for if software in one partition is unaf-

fected by that in other partitions, it will run the same (in terms of both behavior

and performance) whether the other partitions are inhabited or empty. Thus, in

particular, individual software functions can be developed and certified using the

real environment of the partitioned system, but with the other partitions empty

(or, more likely, containing stubs to provide the data sources and sinks required

by the function under examination). The Alternative Gold Standard ensures that

the certified software will behave exactly the same when those other partitions are

inhabited by real (and possibly faulty) functions.

4I am grateful to David Hardin, Dave Greve, and Matt Wilding of Collins Commercial Avionics
for explaining this approach and its motivation to me [111].

12 Chapter 2. Informal Requirements

A problem with the Alternative Gold Standard is apparent in the mention of

"data sources and sinks" in the discussion above: software functions residing in sep-

arate partitions are seldom completely independent--some provide data or control

inputs to others. This means that "unaffected by the software in other partitions"

needs to be qualified in some way that allows the effects of intended communica-

tions while excluding those that are unintended. Thus, although the Alternative

Gold Standard is more attractive than the original one as a requirements definition

for partitioning isolated functions, it needs further development before it can serve

as a gold standard for the more general case of partitioned but interacting functions.

When restricted to isolated functions, the basic and the Alternative Gold Standards

are very similar; indeed, if suitably formalized, each would be definable in terms of
the other.

The original formulation of the Gold Standard has the advantage that it fo-

cuses attention on the structural differences between a partitioned system and a
federated one. These structural differences introduce two classes of hazards into a

partitioned system: a fault in one partition could corrupt code, control signals, or

data (in memory or in transit) belonging to another, or it could affect the ability

of another partition to obtain access to, or service from, a shared resource (such as

the processor or a bus). In considering issues in the design and assurance of par-

titioned systems, it is therefore useful to distinguish two dimensions--spatial and

temporal--corresponding to these two classes of hazards.

Spatial Partitioning

Spatial partitioning must ensure that software in one partition cannot

change the software or private data of another partition (either in mem-

ory or in transit), nor command the private devices or actuators of other

partitions.

Temporal Partitioning

Temporal partitioning must ensure that the service received from shared

resources by the software in one partition cannot be affected by the soft-

ware in another partition. This includes the performance of the resource

concerned, as well as the rate, latency, jitter, and duration of scheduled
access to it.

The mechanisms of partitioning must block the spatial and temporal pathways

for fault propagation by interposing themselves between avionics software functions

and the shared resources that they use. In this way, the partitioning mechanisms

can control or "mediate" access to shared resources. In the next chapter, we consider

the mechanisms that can be used to provide mediation in each of the two dimensions

of partitioning.

Chapter 3

Issues and Mechanisms

As discussed in the previous chapter, issues in partitioning arise at two levels: within

a single processor, and across a distributed system. Issues in partitioning also in-

teract with those in fault tolerance. We consider these topics separately below, and

further separate them into consideration of spatial and temporal partitioning.

3.1 Partitioning Within a Single Processor

We start by considering partitioning within a single processor. We sometimes use the

neutral term application to refer to the computational entity within each partition;

this could be a complete avionics function (e.g, a yaw damper), or a part of one.

Depending on the implementation, an application could correspond to the operating

system notions of process or virtual machine, or it could be some different notion.

An application will generally be composed of smaller units of computation that are

called or scheduled separately; we generally refer to these as tasks. Again depending

on the implementation, these may correspond to an operating system notion such

as thread or lightweight process. Partitioning must prevent applications interfering

with one another, but the tasks within a single application are not protected from

each other. We focus first on partitioning in the spatial dimension.

3.1.1 Spatial Partitioning

The basic concern of spatial partitioning is the possibility that software in one

partition might write into the memory of another: memory is often pictured as a

one- or two-dimensional grid, hence the reference to the spatial dimension for this

aspect of partitioning. Memory includes that used to store programs as well as data,

although in embedded systems it is sometimes possible to hold the former in ROM,

where it cannot be overwritten by errant software.

13

14 Chapter 3. Issues and Mechanisms

Hardware mediation provided by a memory management unit (MMU) is the

usual way to guard against violations of spatial partitioning. The details vary from

one processor design to another, but the basic idea is that the processor has (at

least) two modes of operation and, when it is in "user" mode, all accesses to memory

addresses are either checked or translated using tables held in the MMU. A layer of

operating system software (generally called the kernel) manages the MMU tables so

that the memory locations that can be read and written in each partition are disjoint

(apart, possibly, from certain locations used for inter-partition communications).

The kernel also uses the MMU to protect itself from being modified by software

in its client partitions, and must be careful to manage the user/supervisor mode

distinctions of the processor correctly to ensure that the mediation provided by the

MMU cannot be bypassed. (In particular, entry and exit from the kernel needs to

be handled carefully so that software in a partition cannot gain supervisor mode;

some processors have had design flaws that make this especially difficult [43].)

Software executing in a partition accesses processor registers such as accumula-

tors and index registers as well as memory. Generally, the kernel arranges things so

that the software in one partition executes for a while, then another partition is given

control, and so on; when one partition is suspended and another started, the kernel

first saves the contents of all the processor registers in memory locations dedicated

to the partition being suspended, and then reloads the registers (including those in

the MMU that determine which memory locations are accessible) with values saved

for the partition that executes next. The software in the partition resumes where

it left off and cannot tell (apart from the passage of time while it was suspended)

that it is sharing the processor with other partitions.

The description just given resembles classical time-sharing, where partitions can

be suspended at arbitrary points and resumed later. Some variations are possible

for embedded systems. For example, if partitions are guaranteed an uninterruptible

time slice of known duration, they can be expected to have finished their tasks before

being suspended and can then be restarted in some standard state, rather than

resumed where they left off. This eliminates the cost of saving the processor registers

when a partition is suspended (but at least some of them--including the program

counter--must be restored to standard values when the partition is restarted). We

can refer to the two types of partition swapping arrangements as the restoration and

restart models, respectively.

In either case, the requirement on the mediation mechanisms managed by the

kernel is that the behavior perceived across a suspension by the software in each

partition is predictable without reference to anything external to the partition. In

the "restoration" model, the processor state must be restored to exactly what it was

before suspension; in the "restart" model, it must be restored to some known state.

It may be acceptable in the latter case to specify that some registers may be "dirty"

on restart and that the software in a partition is required to work correctly without

3.1. Partitioning Within a Single Processor 15

making assumptions on their initial contents--this saves the cost of restoring these

registers to standard values (obviously, the program counter and MMU registers

must be restored). 1 The requirement to make behavior predictable across the sus-

pension and resumption of a partition generates in turn the requirement that the

operation of the processor must be specified precisely and accurately with respect

to all of its registers--for it is important that register saving and restoration or

reinitialization should not overlook visible minor registers such as condition codes

and floating point/multimedia modes, and that hidden registers, such as those as-

sociated with pipelines and caches, really are hidden. (Again, processors often have

design glitches, or errors and omission in documentation, that make it difficult to

accomplish this [98].)

In the approach just outlined, the mechanisms of spatial partitioning comprise

the processor and its MMU, and the kernel. There is much advantage, from the

point of view of assurance and formal specification, if these mechanisms are sim-

ple. Unfortunately, commodity processors, their MMUs, and associated features

such as memory caches, are generally designed for high performance and extensive

functionality rather than simplicity. Although a fast processor is often desired, the

functionality of MMUs and cache controllers generally exceeds that required for

embedded systems; MMUs, in particular, are usually designed to provide a flexible

virtual memory and contain large associative lookup tables--whereas for partition-

ing, a simple fixed memory allocation scheme would be adequate. 2 The latter would

also be far less vulnerable to bit-flips caused by single-event upsets (SEUs) than a

traditional million-transistor MMU. However, because they are usually highly inte-

grated with their processor, it can be difficult or even impossible to replace MMUs

and cache controllers with simpler ones, but consideration should be given to this

issue during hardware selection.

An alternative to spatial partitioning using hardware mediation is Software Fault

Isolation (SFI) [108]. The idea here is similar to array bounds checking in high-level

programming languages, except that it is applied to all memory references, not just

those that index into arrays. By examining the machine code of the software in a

partition, it is possible to determine the destinations of some memory references and

1Although partitioning has much in common with computer security, this is one aspect where
they differ: "dirty" registers are anathema in computer security because they provide a channel
for information flow from one partition to its successor. The issues underlying this difference are
considered on page 53 in Chapter 4.

2MMUs are also heavily optimized for speed: in some architectures, the MMU will start a read
from the memory using the current page map before it has determined whether that is still valid; if
it is not valid, the MMU squashes the bus read transaction before it completes. Also, for efficiency,
multiple copies may be maintained for some of the associative lookup tables, and these must be kept
consistent with each other. All this is done in the context of speculative out-of-order execution,
where providing assurance for correctness of these optimizations is nontriviM. A separate problem
is the timing uncertainty introduced by these optimizations: ratios of 2 to 1 between average-case
and worst-case timings m'e not uncommon [51] (see also http://_-_w, intelligentfirm, corn/).

16 Chapter 3. Issues and Mechanisms

jumps and hence to check, statically, whether they are safe. Memory references that

indirect through a register cannot be checked statically, so instructions are added to

the program to check the contents of the register at runtime, immediately prior to

its use. By using more elaborate static analysis or program verification techniques

(e.g., to ensure that an index register has not been changed since last checked), it is

possible to minimize the number of runtime checks; by using modest optimizations

of this kind, an overhead of just 4% has been reported for the runtime checks of

SFI [108].

Static (i.e., compile-time) analysis of information flow within individual pro-

grams written in high-level languages has long been a topic in computer security.

In its simplest form, some of the variables used by the program are labeled HIOH

and some LOW, and the goal is to check whether information from a HIOH variable

can ever influence the final value of one labeled LOW. Techniques for information

flow analysis include approximate methods similar to typechecking [21,107] or to

data flow analysis [6], as well as exact methods [62] and those that rely on formal

proof [80]. It is possible that approaches based on these techniques could reduce, or

even eliminate, the runtime overhead of SFI.

Although SFI usually imposes a small overhead on memory references within a

partition, it can greatly reduce the cost of controlled references or procedure calls

across partitions (compared with hardware mediation, since the cost of a partition

swap is avoided). However, for reasons discussed later (page 27), such cross-partition

references may not be acceptable in some partitioned architectures, so the advantage
would be moot in those cases.

A disadvantage of SFI compared with hardware-mediated partitioning is that

it imposes an additional analysis and certification cost on every program, whereas

hardware mediation has the one-time cost of designing, implementing, and certifying

the partitioning mechanisms of the kernel and its supporting hardware. On the other

hand, the analysis required for SFI lends itself to powerful automation (cf. "extended

static checking" [22], and "proof carrying code" [79]) where the certification cost

would be transferred to the one-time cost of certifying the tools.

Even without automation, SFI may have advantages of cost and simplicity in

"asymmetric" applications where a single function is allocated to a processor but it

is desired to include some less critical "nice-to-have" features. These could be parti-

tioned from the main safety-critical function by SFI, while the latter runs unchanged.

SFI might also be cost-effective in partitioning functions of similar assurance levels

that already require significant analysis (e.g., two Level A functions). And SFI could

also be used to provide additional protection within partitions (i.e., among tasks)

established by hardware mediation.

One concern about SFI, especially when static analysis is used to optimize away

many of the runtime checks, is that it provides little protection against hardware

faults (e.g., SEU-induced bit-flips) that cause memory addresses that were correct

3.1. Partitioning Within a Single Processor 17

when analyzed to be turned into ones that are incorrect when executed. The bad

memory reference will be caught only if a runtime check is in the right place; a

hardware MMU, on the other hand, mediates every reference at its time of execu-

tion. It was earlier stated that the purpose of partitioning is to protect functions

against faults of design and implementation in other functions, not to guard against
hardware faults--since these could afflict the function even if it had its own ded-

icated processor--but a hardware fault that leads to a violation of partitioning is

not a fault that would have afflicted the function if it had its own processor, so

it seems that the concern is legitimate. However, a little analysis shows that the

increased exposure to hardware faults is small. Suppose the function in which we

are interested shares its processor with n other functions of similar size, and that

the probability of an SEU hitting any one of them is p. Suppose further that the

probability that an SEU in one function will cause it to violate SFI partitioning and

to afflict some other function is q. Then the probability of an SEU directly or indi-

rectly affecting the original function changes from p to (1 + q)p when the function is

moved from a dedicated to a shared processor. (Notice that this is independent of n:

the chance of an SEU hitting somewhere increases by a factor of n, but the chance

that the consequent memory error affects the function concerned is reduced by the

same factor.) This small increase in probability is unlikely to be significant, and we

conclude that the possibility of SEU-induced addressing errors does not invalidate
SFI.

Perhaps surprisingly, it is some implementations of hardware-mediated parti-

tioning that seem more vulnerable to this kind of fault scenario. Although an SEU

in an individual function cannot lead to a violation of partitioning when memory

references are mediated by an MMU, an SEU in the MMU itself could be quite dan-

gerous. If the MMU is a large device with millions of transistors, then the possibility

of an upset cannot be overlooked, and a change to one bit in an address translation

register may cause the memory references of one partition systematically to infringe

on the memory of another. It seems to me that in designs where it is possible to

provide a custom MMU, it would be prudent to ensure that this is either fault toler-

ant, or that it merely checks rather than translates addresses (so that a double fault

would be needed to violate partitioning); best of all might be relocation or checking
with hardwired values.

So far, our consideration of partitioning has considered only the processor and

the memory, and has assumed that different partitions are meant to be isolated from

each other; we now need to consider inter-partition communications, and devices.

Like partitioning itself, there are two dimensions to inter-partition communication:

the spatial dimension is concerned with where and how data is transferred from

one partition to another, while the temporal dimension is concerned with whether

and how synchronization is performed, and how one partition invokes services from

18 Chapter 3. Issues and Mechanisms

another. We postpone consideration of the latter topics to the discussion of temporal

partitioning in Section 3.1.2 and focus here on the spatial dimension.

The obvious way to communicate data from one partition to another is to copy

it from a buffer in memory belonging to the first partition into a separate buffer in

the memory of the second. Because only the kernel has access to the memory of

both partitions, it must perform the copying and, since it generally runs without

memory protection, it must check carefully against buffer overruns. A more efficient

scheme uses a single buffer in memory locations that are among those the sending

partition can write and the receiver can read (both MMU and SFI forms of memory

protection can do this); data can then be copied into the shared buffer by the sending

partition without the active participation of the kernel. The receiving partition must

assume that the sending one can write arbitrary data anywhere in their shared

buffers whenever it has control, and its verification must be performed under this

assumption. It seems cleanest if separate buffers are used for each direction of

transfer, but bidirectional buffers may also be acceptable. It is, however, important

that separate buffers are used for each pair of partitions (otherwise, partition A

could overwrite the data of B in C's single input buffer).

Observe that it is important to restrict inter-partition communications to those

that are intended: one partition should be able to send data to another only if that

communication is authorized in the specification of the system configuration (and

the receiving partition must then have a buffer to receive it). A related topic is

how one partition should name the other partitions with which it communicates.

Absolute addresses (e.g., "send this datum to Partition 7") lead to a rigid and

fragile system organization and are to be deprecated on this account. Functional

addresses (e.g., "send this datum to the pitch autopilot") are little better: they

build assumptions about the system structure into individual applications and limit

the opportunities for reuse and reconfiguration. Relative addressing (e.g., "send this

datum out on my Port 7") allows the binding of names to specific inter-partition

communication channels to be postponed until system configuration time (and may

allow some dynamic reconfiguration), but requires a database to record what type of

data or service is provided (or expected) on a given port. The best arrangement may

be one where partitions use the type of data or service provided or expected as the

name of the port concerned (e.g., "send this datum out on my air-data-samples

port," or "get me an air-data-sample"); the binding of these names to inter-

partition channels can be done during system configuration, or at runtime. In

the latter case, we have something like a publish-subscribe architecture [81]; this

provides excellent support for dynamic reconfiguration, but its application to life-

critical systems is still an issue for research. (Some avionics systems use this type of

naming or addressing scheme, but not in a way that is tightly integrated with their

fault-tolerance mechanisms.)

3.1. Partitioning Within a Single Processor 19

Software in one partition should not make assumptions about when tasks in

other partitions are scheduled (tasks within some partitions may be dynamically

scheduled); this, combined with normally asynchronous communication, means that

care is needed when communicating time-sensitive data. For example, a task that

collects from its input buffer a sensor sample contributed by another partition needs

to know when that sample was taken. The usual arrangement is to attach a time-

stamp to the sample (since both partitions are running in the same processor, they

have access to a common clock). However, the utility and interpretation of a sensor

sample depends not only on its age, but also on its accuracy and the dynamics of

the physical process being measured (e.g., an altimeter reading that is 1 second

old is much less useful if the aircraft is landing than if it is in cruise). Some of

these factors are likely to be much better known to the partition that provides the

sensor sample than to the one that receives it, and duplicating the knowledge in

both places is expensive and raises the problem of ensuring consistency. Instead,

it seems best if the provider of the data also provides a compact description of its

temporal interpretation. Kopetz has made an interesting proposal of this kind under

the name temporal firewall [52, 56], which exists in two variants. A phase-insensitive

sensor sample is provided with a time and a guarantee that the sampled value is

accurate (with respect to a specification published by the partition that provides

it) until the indicated time. For example, suppose that engine oil temperature may

change by at most 1% of its range per second, that its sensor is completely accurate,

and that the data is to be guaranteed to 0.5%. Then the sensor sample will be

provided with a time 500 ms ahead of the instant when it was sampled, and the

receiver will know that it is safe to use the sampled value until the indicated time.

This is much more useful than a timestamp that merely records when the sample

was taken. A phase-sensitive temporal firewall is used for rapidly changing processes

where state estimation is required; in addition to sensor sample and time, it provides

the parameters needed to perform state estimation. For example, along with the

sampled altitude it may supply vertical speed, so that altitude may be estimated

more accurately at the time of use.

In addition to communications between partitions, we must examine communica-

tions between partitions and devices. Devices, which include sensors and actuators

as well as peripherals such as mass storage, have implications for both temporal and

spatial partitioning. Most devices raise an interrupt when data is available, or when

they need service. Such interrupts affect the timing and locus of control, and con-

sideration of their impact is postponed to the discussion on temporal partitioning in

Section 3.1.2; here we concentrate on the relationship of devices to spatial partition-

ing. Devices impact spatial partitioning in three ways: they need to be protected

against access by the wrong partition, they must not be allowed to become agents

for violating partitioning, and they may themselves need to be partitioned.

20 Chapter 3. Issues and Mechanisms

The simplest case is where a device "belongs" to some partition and should not

be accessed by others. Most modern processors use memory-mapped I/O, mean-

ing that interaction with devices is conducted by reading and writing to registers

that are referenced like ordinary memory locations. In these cases, the mechanisms

(MMU or SFI) used to provide ordinary memory protection can also protect devices.

If memory protection is insufficiently fine-grained to permit devices to be allocated

to partitions as desired, then it will be necessary to create special device manage-

ment partitions that own several devices but are trusted to keep them separate.

Similar arrangements will be necessary if several devices are attached to a data bus

or remote data concentrator (and may also be useful if multicast communication

services are desired). Of course, the trust in such "multiplexing" partitions needs

to be justified by suitable verification and assurance. An alternative to providing

device management partitions is to perform these functions in the kernel. The ar-

gument against doing this is that the properties of the kernel must be assured to a

very high degree, so there is much advantage to keeping its functionality as simple as

possible. It should be easier to provide assurance for a kernel that provides memory

protection, plus separate device management partitions, than for a kernel having
both functions.

Some devices may be shared by more than one partition. Such devices come

in two forms: those that need protection and those that do not. An example of

the former is a sensor that periodically places a sample in a device register. There

seems no harm in allowing two partitions both to have read access to the memory

location containing that device register. Devices that accept commands are more

problematical in that faulty software in one partition may issue commands that

render the device inoperable or otherwise unavailable to other partitions. Protection

by a special device management partition seems necessary to mediate access in

these cases. (The Clementine spacecraft was lost when a software fault caused

garbage to be sent over an unmediated bus, where it was interpreted by an attached

device as a command to fire all the thrusters without limit.) Notice that such a

device management partition must play a more active role in checking or controlling

the device than the simple "multiplexing" device management partitions described
earlier.

Device management partitions also are necessary to mediate access to truly

shared devices such as mass storage. In these cases, it is usual for the device manager

to synthesize a service (e.g., a file system) rather than just mediate access to the raw

device (e.g., a disk), and to partition the service appropriately (e.g., with a separate

"virtual" file system for each client partition). A device manager of this kind poses

challenges to assurance that are similar to those of the main memory partitioning

mechanism, since flaws could allow one client partition to write into areas intended
for another.

3.1. Partitioning Within a Single Processor 21

Mass storage and other devices that transfer large amounts of data at high

speed generally do so by direct memory access (DMA) rather than through memory-

mapped device registers (which are limited to a few bytes at a time). Depending

on the processor and memory architecture, DMA devices may be able to address

memory directly, without the mediation of the MMU. This arrangement has the

potential to violate partitioning since faulty software may instruct the device to

use a region of memory belonging to some partition other than its own; a fault in

the device itself could have a similar effect. A simple solution is to interpose some

checking or limiting mechanism into the device's memory address lines (e.g., by

cutting or hard-wiring some of them) so that the range of addresses it can generate

is restricted to lie within that of the partition that manages it. Another solution is

to isolate each DMA device to a private bus with a dual-ported memory bridging

the private and main system buses.

3.1.2 Temporal Partitioning

Our context is real-time embedded systems, where correctness requires not only that

the right results are produced, but that they are produced at the right time. The

concern of temporal partitioning is to ensure that activities in one partition do not

disturb the timing of events in other partitions.

The most gross concerns are that faulty software in one partition might mo-

nopolize the CPU, or that it might crash the system or issue a HALT instruction--

effectively denying service to all other partitions. Other scenarios that can cause

a partition to fail to relinquish the CPU on time include simple schedule overruns,

where particular parameter values cause a computation to take longer than its al-

lotted time, and runaway executions, where a program gets stuck in a loop.

Although their manifestations are in the temporal dimension, system crashes

and instructions that halt the CPU are usually prevented by the mechanisms of

spatial partitioning. In particular, HALT and other dangerous instructions usually

cannot be issued (or, rather, they cause a trap to the kernel) when in user mode.

There are reports, however, that some steppings of some commodity processors

have untrapped instructions that can halt the CPU, or user-mode instructions that

can "hang" when supplied with certain parameters (e.g., see http://www, x86. org;

also [98] notes 102 bugs reported up to 1995 in various versions and steppings of

the Intel 80X86 architecture, while [8] documents a comparable number in later

processors). It is important to know these characteristics of the precise stepping of

the processor employed (which may require a nondisclosure agreement), but it is

difficult to provide a complete solution to such untrapped hardware flaws. Perhaps

the best that can be done is to use SFI-like techniques and to scan the machine code

of each application and insert runtime checks as necessary to prevent execution of

dangerous instructions or parameter values (a purely static check will be inadequate

22 Chapter 3. Issues and Mechanisms

if parameter values can be constructed or modified--either under program control

or by an SEU--at runtime).

The last-ditch escape from a halted or locked-up CPU is a watchdog timer in-

terrupt managed by the kernel. This is not certain to provide recovery, however,

unless the basic kernel design is correct: for example, design faults in the Magellan

spacecraft led to a runaway execution in which a program sat in a loop that did

nothing but reset the watchdog timer [18, pp. 209-221] [25, 50], 3 and not all halted

or "hung" processors respond to the timer interrupt. Recovery in these dire cases

usually depends on a system reset (or cycling the power supply, which causes a re-

set), which may be invoked either manually or by other components in a distributed

fault-tolerant system (which is how Magellan recovered).

Runaway executions in the kernel, lockups, and untrapped halt instructions

could all afliict a processor dedicated to a single function, and so their treatment is

more in the domain of system-level design verification or fault tolerance than parti-

tioning. Overruns or runaways within a function, however, are genuinely the concern

of partitioning and are usually controlled through timer interrupts managed by the

kernel: the kernel sets a timer when it gives control to a partition; if the partition

does not relinquish control voluntarily before its time is up, the timer interrupt will

activate the kernel, which then will then take control away from the overrunning

partition and give it to another partition under the same constraints.

Merely taking control away from an overrunning partition does not guarantee

that other partitions will be able to proceed, however, for the overrunning partition

could be holding some shared device or other resource that is needed by those

other partitions. The kernel could break any locks held by the errant partition and

forcibly seize the resource, but this may do little good if the resource has been left

in an inconsistent state. These considerations reinforce the earlier conclusion that

devices and other resources cannot be directly shared across partitions. Instead, a

management partition must own the resource and must manage it in such a way

that behavior by one client partition cannot affect the service received by another.

Another problem can arise if the overrunning partition is performing some service

on behalf of another partition: it will generally be necessary to notify the invoking

partition (the next time it is scheduled) of the failure of the service provided by

the other. The invoking partition must have enough fault tolerance that it can

do something sensible despite the failure of the service. It may also be necessary

for the kernel to perform some remedial action on the partition that overran its

allocation. This could force that partition to do a restart next time it is scheduled,

3The flaw in Magellan was in the design of its kernel (sensitive data structures were manipulated
outside the protection of a critical section, so an interrupt could leave them in an inconsistent state).
Such flaws would be unconscionable in a safety-critical system: the design of the core hardware
and software mechanisms simply have to be correct in these systems. In addition to skilled and
experienced designers, formal methods of specification and analysis may be valuable for this purpose
(design diversity is implausible at these levels).

3.1. Partitioning Within a Single Processor 23

or could simply notify the partition of its failure and leave recovery (e.g., the killing

of orphans) to the operating system functions resident in that partition.

Timeout mechanisms such as those just described ensure that each partition will

get enough access to the CPU and other resources, but real-time systems need more

than this: the tasks within partitions need to get access to the CPU and to devices

and other resources at the right time, and with great predictability. This means

that discussion of temporal partitioning cannot be divorced from consideration of

scheduling issues. The real-time tasks within a partition generally consist of iterative

tasks that must be run at some fixed frequency (e.g., 20 times a second) and sporadic

tasks that run in response to some event (e.g., when the pilot presses a button);

iterative tasks often require tight bounds on jitter, meaning that they must sample

sensors or deliver outputs to their actuators at very precise instants (e.g., within a

millisecond of their deadline), and sporadic tasks often have tight bounds on latency,

meaning that they must deliver an output within some short interval of the event

that triggered them.

There are two basic ways to schedule a real-time system: statically or dynami-

cally. In a static schedule, a list of tasks is executed cyclically at a fixed rate. Tasks

that need to be executed at a faster rate are allocated multiple slots in the task

schedule. Even sporadic tasks are scheduled cyclically (to poll for input and process

it if present). The maximum execution time of each task is calculated, and sufficient

time is allocated within the schedule to allow it to run to completion: thus, one task

never interrupts execution of another (although a task may be terminated if it ex-

ceeds its allocation). Notice that this means that a long-duration task may need

to be broken into several smaller pieces to make room for short tasks with higher

iteration rates. The schedule is calculated during system development and is not

changed at runtime (although it may be possible to select among a fixed collection

of different schedules at runtime according to the current operating mode).

In a dynamic schedule, on the other hand, the choice and timing of which tasks to

dispatch is decided at runtime. The usual approach allocates a fixed priority to each

task, and the system always runs the highest-priority task that is ready for execution.

If a high-priority task becomes ready (e.g., due to a timer or external interrupt)

while a lower-priority task is running, the lower-priority task is interrupted and the

high-priority task is allowed to run. Note that this requires a context-switching

mechanism to save and later restore the state of the interrupted task. The challenge

in dynamic scheduling is to allocate priorities to tasks in such a way that overall

system behavior is predictable and all deadlines are satisfied. Originally, various

plausible and ad-hoc schemes were tried (such as allocating priorities on the basis

of "importance"), but the field is now dominated by the rate monotonic scheduling

(RMS) scheme of Liu and Layland [65]. Under RMS, priorities are simply allocated

on the basis of iteration rate (the highest priorities going to the tasks with the highest

rates) and, under certain simplifying assumptions, it can be shown that all tasks will

24 Chapter 3. Issues and Mechanisms

meet their deadlines as long as the utilization of the processor does not exceed 69%

(the natural logarithm of 2--higher utilizations are possible when the task iteration

rates satisfy certain relationships). Some of the simplifying assumptions (e.g., that

the context-switch time is zero, and that tasks do not share resources) have been

lifted or reduced recently [61, 68, 96].

The choice between static and dynamic scheduling is a contentious one (Locke

[66] provides a good discussion). The basic arguments in favor of static scheduling

are its complete predictability and the simplicity of its implementation; the argu-

ments against are that all tasks must run at a multiple of the basic iteration rate (so

that some run more or less frequently than is ideal for their control function), the

handling of sporadic tasks is wasteful, and long-running tasks must be broken into

multiple, separately scheduled pieces (to make room for tasks with faster iteration

rates). The arguments in favor of dynamic scheduling are that it is more flexible

and copes better with occasional task overruns; the arguments against hinge on

the difficulty of giving complete assurance that a given task set will always meet

its deadlines under all circumstances. (The factors that must be considered are

complex and not all are fully characterized; errors of understanding or judgment

are not uncommon. For example, the much publicized communications breakdowns

between the 1997 Mars Pathfinder and its Sojourner rover were due to priority in-

versions in its RMS scheduler. 4 Priority inversions are a well-understood problem in

dynamically scheduled systems, with a well-characterized solution called "priority

inheritance" [20, 96] that was available, but not used, in the commercial real-time

executive used for Pathfinder.)

The mechanisms of both static and dynamic scheduling have to be modified to

operate in a partitioned environment, and these modifications change some tradi-

tional expectations about the tradeoffs between the two approaches; in addition,

partitioning creates opportunities for hybrid approaches that combine elements of

both basic mechanisms. The traditional scheduling problem is to ensure satisfac-

tion of all deadlines, given information about the rate and duration of the tasks

concerned. It is assumed that this information is accurate; if it is not--if, for ex-

ample, some task runs longer or requests service more often than expected--then

the system may fail. When all the tasks in the system are contributing to some

single application, such a failure may be undesirable but will not have repercussions

beyond those consequent on the failure of the application concerned. In a parti-

tioned system, however, it is necessary to ensure that faulty assumptions about the

temporal behavior of tasks belonging to one application cannot affect the temporal

behavior of applications in different partitions.

There seem to be two ways to achieve this temporal partitioning: one is a two-

level structure in which the kernel schedules partitions, with the application in each

4See http://www.research.microsoft.com/research/os/mbj/Mars_Pathfinder/

Authoritative_Account. html.

3.1. Partitioning Within a Single Processor 25

partition then responsible for locally scheduling its own tasks; the other is a single-

level structure in which the kernel schedules tasks, but with a quota system to limit

the consequences of any faults--or faulty assumptions--to the partition that is in
violation.

The first approach usually employs static scheduling at the partition level: the

kernel guarantees service to each partition for specified durations at a specified fre-

quency (e.g., 20 ms every 100 ms) and the partitions then schedule their tasks within

their individual allocations in any way they choose; in particular, partitions may use

dynamic scheduling for their own tasks. Any partition that schedules its tasks dy-

namically must provide a mechanism for interrupting one task in favor of another.

Such support for task swapping is one of the reasons for preferring dynamic over

static scheduling: it simplifies application programming by allowing long-running,

low-frequency tasks to be interrupted by shorter high-frequency tasks, whereas stat-

ically scheduled systems have to break long-running tasks into separately scheduled

fragments that perform their own saving and restoration of local state data to cre-

ate room for the higher-frequency tasks. If partition swapping uses the restoration

model, however, it provides an alternative mechanism for dealing with long-running

tasks within a statically scheduled environment: a single application can be divided

into parts that are allocated to separate partitions that are scheduled at differ-

ent rates. The partition-swapping mechanism then takes care of interrupting and

restoring the long-running tasks, thereby simplifying their construction.

Opportunities such as this make static scheduling for both partitions and tasks

relatively attractive. Conversely, the constraints of static partition scheduling render

its combination with dynamic task scheduling rather less attractive. One of the

conveniences of dynamic scheduling is that it allows new tasks to be introduced--or

the frequency and duration of existing tasks to be changed--with relative ease. But

this ease is vitiated when partitions are statically scheduled because, for example,

a new 10-Hz task can only be fitted into a partition that is already scheduled at

this rate (or some multiple of it), so that the rigidity of the partition-scheduling

mechanism dominates any flexibility in task scheduling.

This drawback could be overcome, however, if partitions could be scheduled at

iteration rates very much higher than those of any task--say 1,000 times a second.

Under the restoration model of partition swapping, a partition that is scheduled at

such a rate and that is guaranteed, say, one tenth of the CPU (i.e., 100 #s every

millisecond) could, for most purposes, be regarded as running continuously on a CPU

that has one tenth the power of the real one, and its tasks could be dynamically

scheduled without regard to the underlying partition schedule. Partition swaps

are relatively expensive on traditional processors (because there is a large amount

of state information that has to be saved and restored) and this renders kilohertz

partition schedules infeasible on such hardware (all the resources of the system would

be expended in swapping). However, specialized processors are under development

26 Chapter 3. Issues and Mechanisms

where partition swapping is performed at the microcode and hardware levels, and

these are believed to be capable of supporting partition schedules in the kilohertz

range with no more than 5% to 10% of the system resources expended on swapping.

Notice that the task swapping required for dynamic scheduling within each partition

can be relatively lightweight (since tasks within a partition are not protected from

each other) and will be activated at a frequency comparable to the fastest task

iteration rate and not the much faster partition swapping going on beneath it.

The radical combination of a static partition schedule operating at kilohertz rates

and dynamic task scheduling within each partition is an attractive one: it seems to

provide both the convenience of dynamic scheduling and the predictability of static

scheduling. However, one of the conveniences of dynamic scheduling is the ease with

which it can accommodate aperiodic activities driven by external events, such as

operator (e.g., pilot) inputs and device interrupts, and it requires care to support

this on top of static partition scheduling--even when this is running at kilohertz

rates. The basic concern is that external events of interest to one partition must

not disturb the temporal behavior of other partitions. If partitions are scheduled

dynamically, use of suitable quota schemes can allow temporal predictability to

coexist with aperiodic event-driven task activations (this is discussed on page 28),

but static partition scheduling ensures predictability through temporal determinism

and this imposes strong restrictions on event-driven activations.

First and most obviously, a static partition schedule does not allow an external

event to initiate a partition swap: the partition schedule is driven strictly by the

processor's internal clock, so that if an event requires the services of a task in a

partition other than the current one, it must wait until the next regularly scheduled

activation of the partition concerned. This increases latency, but may not be a

problem if partitions are scheduled at kilohertz rates. Less obvious, perhaps, are

the consequences of the requirement that the currently executing partition should

see no temporal impact from the arrival of events destined for other partitions.

Even the cost of a kernel activation to latch an interrupt for delivery to a later

partition reduces availability of the CPU to the current partition and must be strictly

controlled. It is possible to add padding to the time allocated to each partition to

allow for the cost of kernel activity used to latch some predicted number of interrupts

for other partitions. But this makes temporal correctness of one partition dependent

on the accuracy of information provided by others (i.e., the number and rate of their

external events)--and even originally accurate information may become useless if a

fault causes some device to generate interrupts constantly.

This concern is a manifestation of a more general issue: temporal partitioning

requires not only that each partition has access to the resources of the system at

guaranteed intervals, but that those resources provide their expected performance.

A CPU whose performance is degraded by the cost of latching interrupts for later

delivery is just one example; others include a memory subsystem degraded by DMA

3.1. Partitioning Within a Single Processor 27

transfers on behalf of other partitions, or an I/O subsystem that is busy on their
behalf.

Under static partition scheduling, temporal partitioning is predicated on deter-

minism: because it is difficult to bound the behavior of faulty partitions, the avail-

ability and performance of each resource is ensured by guaranteeing that no other

partition can initiate any activity that will compete with the partition scheduled to

access the resource. This means that no CPU or memory cycles may be consumed

other than at the behest of the software in the currently scheduled partition. Thus,

in particular, there can be no servicing of device interrupts, nor cycle-stealing DMA

transfers other than those initiated by the current partition. These requirements can

be violated in two ways: a previously scheduled partition may have had some I/O

activity pending when it was suspended, or the external environment may generate

an interrupt spontaneously (e.g., to indicate that a button has been pressed).

Draconian measures seem necessary to prevent these sources of temporal uncer-

tainty. External events either should not generate interrupts (the relevant partition

should poll for the event instead), or it should be possible to defer handling them

until the relevant partition is running (whether this is possible depends on the ha-

ture of the device and the interrupt, and on how selectively the CPU architecture

allows interrupts to be masked off). Similarly, interrupts due to pending I/O from

a device commanded by a previous partition should be masked off. If interrupts

cannot be masked with sufficient selectivity, we could require the kernel to issue

commands that quiet the devices of the previous partition as part of the process of

suspending that partition and starting the next. Alternatively, if devices go quiet

when uncommanded for some short time, the kernel could make the device registers

unavailable (e.g., by changing the MMU table) during the final few milliseconds of

each partition's schedule.

The restrictions just described as necessary to ensure that temporal correctness

of tasks in one partition are unaffected by software in other partitions have con-

sequences for inter-partition communications. With static scheduling of partitions,

a task that needs the services of software in another partition (e.g., to access a

shared device) cannot simply issue a procedure call. In fact, there can be no syn-

chronous services (i.e., where the caller blocks and waits for the service provider

to reply) across partitions because (a) one partition should not depend on another

(that may be faulty) to unblock its progress, and (b) it would impose a large per-

formance penalty: the caller would block at least until its next slot in the schedule

after the service provider's slot. Instead, all inter-partition communication must be

asynchronous (where the caller places requests in the input buffers of tasks in other

partitions and continues execution; when next activated, it looks in its own input

buffers for replies, requests, and unsolicited data from other partitions). Because

faulty software could generate an excessive number of requests for service by another

28 Chapter 3. Issues and Mechanisms

partition, it seems necessary that fixed quotas should be imposed on the number or

rate of service requests that will be honored from each partition.

Some of the restrictions that are necessary when partitions are scheduled stati-

cally may possibly be relaxed when they are scheduled dynamically. It makes little

sense to schedule partitions dynamically and tasks statically, and when both parti-

tions and tasks are scheduled dynamically there is little point in maintaining two

levels of scheduling, so the unit of scheduling will actually be the task. However, the

concern for temporal partitioning will influence which tasks are eligible for execution.

Whereas static scheduling ensures temporal partitioning through strict preplanned

determinism, dynamic scheduling relies on theorems from the mathematical study

of (for example) RMS. There are two problems in applying this theory in the con-

text of partitioning: one is that a faulty partition may violate the assumptions

underlying the theorem concerned; the other (related) problem is that the simplest

(and therefore, for life-critical applications, preferred) theorems make the strongest

assumptions (e.g., that context switches take no time), whereas those with more

realistic assumptions rest on more elaborate and less well-established theory. Both

problems can probably be overcome by having the kernel and its scheduler enforce

quotas.

For example, if schedulability of a task set is predicated on a given partition tak-

ing no more than 20% of the available time in each cycle, then the kernel can simply

refuse to make any of its tasks eligible for scheduling once that 20% quota has been

reached. The problem with this simple scheme is that a faulty partition may con-

sume its quota in very many small bursts (or a device may generate interrupts at a

rapid rate). The many partition swaps entailed thereby may have a more deleterious

effect on the tasks of other partitions than the CPU time directly consumed by the

faulty task. A plausible way to overcome this problem is to subtract the cost of a

partition swap (and the performance degradation caused by disturbing the caches)

from the quota of the task that causes it. Quotas managed in this way provide

many of the guarantees of static scheduling while retaining some of the flexibility of

dynamic scheduling. For example, such a scheme could allow synchronous as well as

asynchronous inter-partition communications, together with the ability to service

aperiodic events and interrupts. (Modern operating systems such as Scout use a

somewhat similar approach, in which accounting for resource usage is performed

on abstractions called paths [102].) However, many of the restrictions and concerns

discussed for static partition scheduling remain relevant for dynamic scheduling:

for example, it still seems necessary to eliminate cycle-stealing DMA transfers and

other performance-degrading activities that cannot easily be controlled by quotas,

and it is also necessary to ensure that interrupts for a partition that has exceeded

its quota are masked or latched at truly zero cost. Other potential sources of cross-

partition interference such as locks and semaphores must also be suitably controlled

(probably by elimination).

3.1. Partitioning Within a Single Processor 29

Quota-based dynamic scheduling may provide simple guarantees that the tasks

of nonfaulty partitions receive their expected allocations (i.e., they receive enough

time), but guarantees that they will hit their deadlines (i.e., they get it at the

right time) are more problematical (there are, for example, scenarios under RMS

where the early completion of one task causes another to miss its deadline [84]).

In practice, relatively few tasks may need to be scheduled with great temporal

precision: it is generally necessary to sample sensors and control actuators with

very low jitter, but it does not greatly matter when the control laws are evaluated

provided their results are ready when needed. Thus, we can envisage a scheme in

which certain tasks (those associated with sensors and actuators) are guaranteed to

execute with great temporal accuracy, while others are guaranteed only to get their

allocation of resources sometime during their period. To achieve this, the sensor

and actuator tasks could run in separate processors that are statically scheduled

(and communicate with the dynamically scheduled computational tasks through

dual-ported memory), or they could run at the highest priority in the dynamically

scheduled system; justification for the latter scheme would require deeper theorems
than the former.

Whether partitions and tasks are statically or dynamically scheduled, the kernel

must collaborate with other software to provide some of the services of an oper-

ating system--at the very least it will be necessary to service interrupts. Under

static partition scheduling, interrupts from external devices are allowed only when

their partition is running; this means it is possible to vector interrupts directly to

handlers in the partition, rather than handle them in the kernel. The advantage of

the former arrangement is that it minimizes the complexity of the kernel; its diffi-

culty is that interrupts are often vectored in supervisor mode, which can threaten

hardware-mediated spatial partitioning. Compromise arrangements have the kernel

fielding the hardware interrupt, but then passing it in a safe way to the partition

for service. Arguments against device handling in a partition are that this really

is an operating system service that is better done by an operating system. A con-

ventional operating system is unattractive in a partitioned environment because,

as portrayed in Figure 2.1(a) on page 7, it is a large shared resource that must be

shown to respect partitioning as well as to be free of other faults. A more suitable

arrangement provides operating system services separately within each partition, as

portrayed previously in Figure 2.1(b). This arrangement has the additional bene-

fit that different partitions can use different sets of operating system services: for

example (see Figure 3.1 on page 30), a critical function might use a minimal set of

services (Partition C), while a less critical but more complex function might employ

something close to a COTS operating system (Partition B), and a device manage-

ment partition might consist largely of standardized operating system services for

device management. Operating system services cannot affect basic partitioning in

this arrangement; however, they must be used with great circumspection in parti-

30 Chapter 3. Issues and Mechanisms

tions that encapsulate a shared service or resource (e.g., a partition that provides

a shared file system). Such partitions are logically an extension of the kernel and

must be shown to partition their service or resource appropriately--which is likely

to be more difficult the more software they contain.

Partition A

OS Services A

Partition B

OS Services B

Device Management
Partition

OS Services for

Device Management

Partition C

OS Services C

Kernel

Hardware

Figure 3.1: Different Operating System Software for Different Partitions

3.2 Partitioning Across a Distributed System

A distributed system resembles our original Gold Standard--a separate processor

for each partition--more closely than a single shared processor, and might seem to

raise few new issues with respect to partitioning: if we accept that the partition-

ing mechanisms employed within individual processors are sound, then connecting

several such systems together surely cannot do any harm. This would be true if we

could arrange dedicated physical point-to-point communications between partitions

in different processors, but the only physical communications that can be provided

are between processors. This limitation has a fairly significant impact, which is

compounded when we consider shared communications, such as buses.

To start with, suppose we wish to communicate data from partition al of pro-

cessor A to partition bl in a different processor B, and that we have a suitable

communications line from A to B. Interrupts will be generated at B as the data

starts to arrive and, as we discovered in the previous section, some care is needed

to ensure that these do not disturb temporal partitioning in B. If B is dynamically

scheduled, the quota schemes discussed previously may be all that is needed, but

matters can be more complicated when partitions are scheduled statically. Under

static scheduling, we must require either that the interrupts can be latched at no

cost until the scheduled execution of partition bl (partitions must be scheduled at

3.2. Partitioning Across a Distributed System 31

high-frequency to make it feasible to service communications in this way), or that

partition bl (or some device management partition that handles the communications

line) is guaranteed to be executing when the interrupts arrive. The latter clearly re-

quires synchronization between the partition schedules of processors A and B and,

by extension to other processors, this implies global synchronization of schedules

across all processors.

The only way to avoid these consequences when static partition scheduling is

employed is to have a data concentrator device at B that buffers incoming data

without imposing a load on the CPU or its buses. The partition bl can then retrieve

incoming data from the data concentrator as part of its normally scheduled activ-

ity. A more aggressive design would allow the data concentrator to write incoming

data directly into buffers associated with each partition using dual-ported RAM.

Even these designs do not necessarily eliminate the need for global synchronization,

however, because of the need to control "babbling idiot" failures in partitions and

processors.

These are failures where a transmitter sends data constantly, possibly over-

whelming its recipient, or denying service to other transmitters. One scenario would

be a runaway in partition al that causes it to transmit to bl throughout its scheduled

execution. We need to be sure that this heavy load on the communications line from

A does not affect the ability of the recipient (B or its data concentrator) to service

its other lines. This requires either some kind of quota scheme at the recipient, or

a global schedule that excludes simultaneous transmissions. A babbling partition

can do so only during its scheduled execution, so a global schedule may be able

to ensure that no two processors simultaneously schedule partitions that transmit

to the same recipient. An alternative if al does not drive the communications line

directly, but instead sends data to a device management partition, is for the man-

agement partition to impose a quota on the quantity of data that it will accept from

any one partition. A babbling processor is an even more serious problem than a

babbling partition; either the recipient must be able to tolerate the fault, or it must

be prevented at the transmitter--mechanisms to do this are discussed below in the

context of bus communications.

The measures discussed above address temporal partitioning in inter-processor

communications; we also need to consider spatial partitioning. The spatial dimen-

sion to partitioning requires mechanisms to ensure that partition al of processor

A can send data to partition bl in a different processor B only if that communi-

cation is authorized. No additional mechanisms are required to ensure this when

a communication line is dedicated to a specific inter-partition channel; additional

mechanisms are needed, however, when one line is shared among multiple receiving

partitions. In this case, the address of the intended recipient must be indicated

in each transmission. This can be done explicitly by including the address in the

data transmitted, or implicitly through the time at which it is sent (the schedules of

32 Chapter 3. Issues and Mechanisms

the sending and receiving processors must be coordinated in this case). A concern

with explicit addresses is that a communications fault could transform a datum ad-

dressed to partition bl into one addressed to b2. This is a fault-tolerance issue, and

is generally handled by checksums or similar techniques to ensure the integrity of

transmitted data. The related partitioning issue is the concern that a fault in the

sending partition al could cause it to address data directly to an unauthorized re-

cipient b2--this fault will not be detected by checksums, since it occurs outside their

protection. The only certain way to contain this fault is to mediate the communi-

cation with some trusted entity that has independent knowledge of the authorized

inter-partition communications. This can be performed either at the transmitter

(e.g., if a device management partition is used to access the communications line)

or at the receiver (e.g., in a data concentrator). A probabilistic method to contain

the fault is to allocate partition addresses randomly from a very large space; the

chance that a fault in al will cause it to manufacture the legitimate address b2 is

then correspondingly small. In the case of implicit addresses, the concern is that

by sending data at the wrong time, the transmitting partition will cause it to be

received by an unintended recipient. Mediation is required to contain this fault,

which is considered in more detail below, in the context of bus communications.

Some architectures allow the components of a distributed system to communicate

without adding explicit addresses to name the intended recipient. In "publish-

subscribe" architectures [81], for example, data is tagged with a description of its

content (e.g., air-data-samples) and recipients "subscribe" to data carrying given

tags. These issues of naming and binding were discussed earlier (page 18) in the

context of individual processors, and similar considerations apply here, but with the

added concern for fault tolerance with respect to communications faults.

Using separate communications lines to connect each pair of processors is ex-

pensive, so buses are generally used in practice. A bus is a departure from the Gold

Standard--it is a resource shared by all processors and all partitions--and it is

therefore crucial to provide partitioning so that a fault in one partition or processor

cannot affect others. The faults of greatest concern with buses are those where a

partition or processor either babbles or fails to follow the access protocol in some

way, so that other partitions or processors are denied timely access to the bus.

A babbling or misbehaving partition cannot interfere with bus access by other

partitions in its own processor (because a partition can access the bus only when

it is scheduled), but it can interfere with access by other processors (by contending

for the bus if this is mediated, or by sending transmissions that collide with those

of other processors if it is not), and it may overwhelm its receivers. A babbling or

misbehaving processor is even more disruptive than a babbling partition because

it is not constrained by its own schedule and can monopolize the bus. Notice that

processor faults such as this are partitioning--not fault-tolerance--issues, because

their consequences would not be so serious if the buses were not shared. Dual or

3.2. Partitioning Across a Distributed System 33

multiple buses can be used, in the hope that a babbler will confine itself to just

one of them, but this cannot be guaranteed. The only certain way to prevent

babbling is to mediate each processor's access to the bus by some component that

will fail independently. The question then is how does the mediator know what is

a legitimate transmission and what is babbling? The answer depends on whether

communications are time or event tri99ered.

In a time-triggered system, transmissions are determined by a schedule, and the

mediating component need only have an independent copy of its processor's sched-

ule and an independent clock in order to determine whether its processor should

be allowed to transmit on the bus. The schedules that govern time-triggered trans-

missions can be either local or global. A local schedule treats each processor inde-

pendently, so that different processors may contend for the bus and the receiving

partition need not be scheduled at the same time as the transmitter. A global sched-

ule, on the other hand, coordinates all processor and bus activity, so that there is

no bus contention. Although it is perfectly feasible to use global scheduling with

contention buses such as Ethernet or CAN (global synchronization means that their

ability to resolve contention will never be exercised, but the system benefits from the

low cost and high performance of the network interface hardware), some specialized

buses have been developed specifically to support and exploit static global schedul-

ing. Examples include the ARINC 659 SAFEbus TM [2, 41] and the Time Triggered

Protocol and its associated Architecture (TTP/TTA) [57]. With global scheduling,

there is no real need to include a destination address with the data (because this

is implicit in the time the message is sent) and some globally scheduled buses (e.g.,

ARINC 659) do eliminate explicit addresses, thereby reducing the number of bits

that need to be communicated and increasing the useful capacity of the bus.

The clock of a bus mediation component needs to be independent of that of

its processor, but synchronized with it. With local scheduling, the purpose of the

mediating component is to control the pacing of bus accesses, but not their absolute

timing and for this purpose it is adequate for the mediator and its processor to

synchronize locally (obviously, this must be done carefully to maintain plausibility

of the independent failure assumption). With global scheduling, however, the clocks

of all processors and mediators must be globally synchronized, and the mediating

components should perform the synchronization independently of their processors.

If clock synchronization is achieved by a high-level protocol, then the mediating

components must be capable of interpreting the full protocol hierarchy, and this

greatly complicates their design. For this reason, the mediating components in

TTA (called bus 9uardians) do not perform independent clock synchronization, but

take synchronizing signals from their host processors [103]. This design prevents

babbling, but a processor that loses clock synchronization will take its bus guardian

with it and will still be able to access the bus at the wrong time, though only for short

periods. However, the unsynchronized processor/guardian pair will also be unable

34 Chapter 3. Issues and Mechanisms

to receive messages correctly (because synchronization is required to satisfy the CRC

checks on each message), and the guardian will shut off all bus access after failing to

receive a set number of expected messages. An alternative approach performs clock

synchronization as a low-level protocol that can be performed by simple mediating

components. This approach seems to require suitable electrical properties of the

bus and its drivers. In SAFEbus, for example, the signals from separate drivers are

OR'ed together on the bus, and this allows a very simple synchronization protocol

that is performed directly in the mediating components (they are called Bus Interface

Units in SAFEbus) [2].

Whereas globally scheduled systems guarantee that the bus will be free when

a processor is scheduled to transmit, locally scheduled and event-triggered systems

must cope with contention between processors attempting to transmit on the bus. In

buses intended for control applications, contention is not resolved probabilistically

following collisions as it is in classic Ethernet, but deterministically using preassigned

slots (as in Echelon's LON), a circulating token (as in PROFIBUS [Process Field

Bus] [23]), or a priority arbitration scheme (as in CAN [Controller Area Network]

[46]) to provide distributed mutual exclusion and thereby prevent collisions. This

determinism does not provide very strong guarantees on how long a processor must

wait to access the bus, however. In CAN, for example, a processor that wishes to

transmit must first wait for any current transmission to finish and then it must

contend with any other processors that also wish to transmit. In CAN, the lowest-

numbered processor always wins the arbitration and may therefore have to wait only

as long as the longest message transmission, while other processors also have to wait

while any lower-numbered processors perform their transmissions. 5 It follows that

only probabilistic guarantees can be given on the bus-access delay in such systems,

and that these guarantees will be quite weak in the presence of faults [105], even if

bus access is mediated to control the worst manifestations of babbling.

It is not straightforward to mediate a processor's access to the bus when that

access is event triggered--that is to say, triggered by the processor's internal compu-

tations, possibly based on data it has received--for there is no way to know whether

an event has legitimately occurred without independently copying the data received

and reproducing the computation performed by that processor. A master-checker

dual-processor arrangement such as this is a very expensive way to prevent babbling.

Redundant processors are obviously required for fault tolerance in IMA, but such

5The Echelon LON protocol has similar characteristics: stochastic flow control is used to reduce
the likelihood of collisions; if a collision does occur, processors back off and access the bus in
order of their "contention slots." The main application of the LON protocol is in automating
buildings, where tight real-time guarantees are unlikely to be required, but the Echelon web site
http ://w_r_. lonworks, echelon, com reports that Raytheon uses this technology in its Control-By-
Light TM fault-tolerant fiber optic distributed control system, which is currently undergoing FAA
Part 25 certification for use in commercial aircraft; however, it seems that mechanisms in addition
to the LON protocol are employed in this application.

3.3. Summary 35

redundancy should be managed flexibly at the system level, not committed to pair-

ing. Without master-checker pairs, the best that can be done to control babbling in

an event-triggered system seems to be the imposition of some limit on the rate at

which a processor may transmit on the bus. The ARINC 629 avionics data bus [3]

has this capability (the bus uses time slots to control access, but it can be used in

the larger context of an event-triggered system).

Because the purpose of partitioning is to control fault propagation, some aspects

of partitioning are very close to fault tolerance--for example, the control of babbling

discussed in the previous paragraphs has elements of both. Mechanisms such as these

are needed to preserve the integrity of the service provided by an IMA architecture

to the avionics functions that it supports. In addition, the avionics functions often

need to be fault tolerant themselves, and an IMA architecture must therefore support

the development of such fault-tolerant applications. There is a choice in how much

fault tolerance should be provided by the IMA architecture, and how much by

the functions themselves. Faults such as babbling, which are outside the control

of any single function and that can have system-wide ramifications, must clearly

be tolerated by mechanisms of the IMA architecture. Sensor failure, on the other

hand, seems more naturally the responsibility of the function that uses the sensor,

while failure of a processor seems to fall somewhere in between--the designers of the

function may best know how to handle such a fault, but may need services provided

by the IMA architecture to implement their strategy.

As mentioned in Section 2.1 (page 8), the trend toward IMA runs in parallel

with another trend toward developing avionics functions on top of a layer that

provides standard operating system services and, possibly, additional services to

support systematic fault tolerance. Fault tolerance in critical systems is usually

based on active redundancy; errors are detected or masked through comparison or

voting of the redundantly computed values. Fault tolerant architectures differ in

whether the redundant replicas perform the same or different computations, and in

whether their states are synchronized (to allow exact-match voting). Some of the

architectural choices for fault tolerance are strongly contingent on other choices--for

example, that between time- and event-triggered architectures--that are themselves

strongly tied to choices in partitioning mechanisms. Kopetz presents persuasive

arguments that time-triggered architectures are the best choice for critical real-

time applications [53-55] and this choice also fits well with the requirements and

mechanisms, discussed in the previous section, for ensuring temporal partitioning

in a distributed system.

3.3 Summary

The topics examined in this chapter show that partitioning interacts rather strongly

with several other issues in system design: for example, scheduling, communication,

36 Chapter 3. Issues and Mechanisms

distribution, and fault tolerance. By "interacts with" I mean that design freedom in

these dimensions is curtailed when partitioning is a primary system goal. This is not

necessarily a bad thing, however, because the restrictions imposed by partitioning

are exactly those that prevent unexpected interactions among system components,

thereby promoting compositionality (i.e., the property that components that work

on their own continue to do so when combined with other components) and reducing

integration costs.

Because partitioning is critical to the safe deployment of IMA, the design and im-

plementation of its mechanisms must be assured to very high standards. Guidelines

for the assurance and certification of safety-critical airborne software are specified

in the document known as DO-178B in the USA and ED-12B in Europe [83]. These

guidelines call for a very rigorous--if traditional--process of reviews, analysis, and

documentation; however, an appendix includes formal methods among the "alter-

native methods" that "may be used in satisfying one or more of the objectives"
described in the document. The idea behind formal methods is to construct a

mathematical model of a software or system design so that calculations based on

the model can be used to predict properties of the actual system--in much the way

that finite element analysis of a structural model for an airplane wing can be used

to predict mechanical properties of the actual wing. Because the appropriate math-

ematical domain for modeling software is mathematical logic, where "calculation" is

performed by so-called "formal deduction" (as opposed to, say aerodynamics, where

the appropriate mathematical domain is partial differential equations, and calcu-

lation is performed by numerical methods), this approach is referred to as use of
"formal methods."

The utility of calculation--as an adjunct to, or replacement for, physical

experimentation--is well understood in other branches of engineering, and is similar

in computer science. In fact, its utility is potentially greater in computer science

than in other engineering disciplines because computer science deals with discrete or

discontinuous phenomena, where experimentation and testing are of limited value

as assurance methods. With discontinuous systems, there may be little relationship

between the behavior of the system in one circumstance and its behavior in another

"similar" circumstance; consequently, extrapolation from tested to untested cases

is of doubtful validity. This contrasts with physical systems, where continuity jus-

titles safe extrapolation from limited test cases. Formal methods augment testing

by allowing all the behaviors of a system to be examined. Formal methods con-

sider a model of the system, whereas testing examines the real thing, so the two

approaches complement each other. An elementary description of formal methods,

and their application to the certification of avionics is presented in [91], with more

detail available in [90].

In addition to their role in assurance, the models constructed in formal methods

can often help clarify requirements and design choices, and can lead to improved

3.3. Summary 37

understanding of design problems. They do this by abstracting away all detail

considered irrelevant to the problem at hand, and by formulating the remaining

issues with mathematical precision. Formal models for partitioning could therefore

help refine our understanding of this topic. Now, partitioning has much in common

with certain issues in computer security, and those issues have been the target of

considerable research in formal modeling extending over more than two decades. The

next chapter, therefore, examines issues in computer security related to partitioning,

and outlines the formal modeling techniques that have been tried.

38

Chapter 4

Comparison With Computer

Security

Computer security is related to partitioning in that both are concerned with the abil-

ity of one software application to influence another. The concerns are that sensitive

information might "leak" from one partition to another (this is called information

flow in the security context), or that doubtful information might contaminate high-

quality information (this is called information integrity in the security context), or

that one partition might monopolize or reduce timely access to the CPU or some

other resource (this is called denial of service in the security context). Much work

over many years (see_ for example_ a survey published in 1981 [60]) has sought to

provide a firm understanding of these security issues and their enforcement mech-

anisms, and we might hope to apply some of this work--or at least the underlying

ideas--to partitioning. In addition, research in computer security has sought to

provide rigorous, formal approaches to the specification and verification of secure

systems, and there is hope that these approaches could contribute to the devel-

opment of strong assurance techniques for partitioning in avionics. The following

sections review these security issues and the formal modeling techniques that have

been applied to them. The goal here is to explain the basic ideas and approaches, so

we merely describe the formal techniques that have been used rather than present
the actual formalism.

4.1 Data and Information Flow

The most studied aspect of computer security is something of a dual to one of

the concerns of spatial partitioning. In spatial partitioning, a concern is that one

partition might write data into a second, and thereby disrupt its operation. In

security we are more concerned with the data that is written: if data in the first

39

40 Chapter 4. Comparison With Computer Security

partition is considered highly classified, then writing it into a more lowly classified

partition is tantamount to disclosing it. Reflecting this concern, computer security

generally uses the more neutral term process for what was called a partition in the

previous chapter (indeed, the computer security notion that is closest to partitioning

is called "process security" [9]). Data flow security is concerned with controlling

channels for disclosure; information flow security is concerned with more subtle

channels in which data is not written directly, but its information content is disclosed

just as effectively.

4.1.1 Access Control

A basic mechanism in enforcing both partitioning and information flow security is

called access control: the computer system is assumed to have some means (typically,

supervisor/user mode distinctions and memory management hardware) for limiting

the primitive resources that a process can access, and the ways in which it can access

them. Then some higher-level resources are synthesized (e.g., a file system), and

rules governing access to those resources are defined and implemented in terms of

the more primitive resources and protections. The rules constitute an access control

policy. A familiar example is that of the Unix file system: each file is associated with

a particular owner and group, and we can specify separately whether the owner,

members of the group, or other users can read, write, or execute the file. This

example raises two important topics in access control: the first concerns the choice

and specification of the access control policy that is to be enforced, and the second

concerns the completeness of that enforcement.

The Unix file system provides a discretionary access control policy: users who

have read access to a file can, at their discretion, copy it and grant access to the copy

in any way they choose. This may be contrary to the intent of the original owner, or

to some organizational policy. To deal with these concerns, various more constrained

kinds of mandatory access control policies have been defined. The simplest example

is the multilevel security policy that is intended to reflect practices for handling

classified military information. In a multilevel policy, every resource and every

process (computer security uses the terms object and subject for these) is given

a label from some ordered set (typically UNCLASSIFIED, CONFIDENTIAL, SECRET,

and TOP SECRET), and a subject may have read access to an object only if the

subject's label (its clearance) is equal or to greater than that of the object (its

classification). 1 This rule (it is called the simple security property) does not stop a

subject creating a copy of an object at a lower classification and thereby violating

the intent of the policy, so it is augmented by another rule called the ,-property

(pronounced "star property") that says that a subject may have write access to an

1Matters are complicated in practice by the use of compartments (e.g., NATO, NOFORN) in

combination with the basic classifications to create a partial ordering.

4.1. Data and Information Flow 41

object only if the object's label is equal to or greater than that of the subject. The

combination of the simple and the • properties (i.e., a subject can only read "down"

and write 'Cup" in security level) constitute the historically significant Bell and La

Padula security policy [i0]. Under further examination, this policy raises important

questions that will be considered shortly. First, though, we return to the related

question of completeness of an access control policy.

The access control policy of the Unix file system can be bypassed if users can

directly read or write the contents of the disk on which those files are stored. Thus,

although our interest is in protecting files, we also need to be concerned about the

disk, and possibly other elements of the system as well. So the issue of completeness

in access control concerns how much of the system needs to be placed under access

control, and in what way, for us to be sure that the resource we actually want to

protect is, indeed, protected against all possible attacks. This issue is complicated

by the fact that security is really about protecting information, not mere data, so

that any channel (a metaphorical example would be by tapping on the walls in Morse

code) that allows the information content of a file to be conveyed to an unauthorized

user is as dangerous as the ability to copy a file directly.

The possible channels for information flow can be quite subtle and hard to detect

(there were at least two in Bell and La Padula's "Multics Interpretation" [i0]). For

example, suppose we had a special Unix system that imposed the Bell and La

Padula policy on file access, but with the additional property that file names are

required to be unique across all users: an attempt to create a file with an existing

name returns an error code. Then, a SECRET process can convey information to

an UNCLASSIFIED one by creating files with prearranged names: the UNCLASSIFIED

process retrieves the information by checking whether or not it is able to create files

with those names. This is an example of a "covert" channel; more particularly, it

is a covert storage channel (because it exploits information stored in the directory

structure of the file system; the other kind of channel uses timing information--see

Section 4.3) [59, 64]. The channel is noisy (some other, innocent, process might

have created files with those names), but coding techniques allow information to

be transmitted reliably over noisy channels. Covert channels are of concern for

two reasons: first, they can be used to transmit information at surprisingly high

bandwidth (one early demonstration drove a teletype at full speed using a channel

that depended on sensing where a disk head was positioned [95]) and second, they

are no different in concept from more blatant channels (e.g., the unprotected disk)

that leave a resource open to direct access (both are symptoms of incompleteness)-

so that unless we have methods of specification and verification that are able to

eliminate subtle covert channels, we have little guarantee that we can eliminate any

channels at all.

It might seem that information flow and covert channels are esoteric security

concerns and that only basic access control is relevant to partitioning. However,

42 Chapter 4. Comparison With Computer Security

while it is true that covert information flow may be of little concern for partitioning

(because it depends on collusion between sender and receiver and is therefore im-

plausible as a fault manifestation), the mechanisms used for such flow definitely are

of concern. Consider, for example, the unique-file-name channel described above.

This serves as a channel for information flow because one subject can affect the be-

havior perceived by another (i.e., whether or not the attempt to create a file returns

an error), and this is surely contrary to the expectations of partitioning--for one

interpretation of those expectations is that the behavior perceived by software in

any given partition should be independent of the actions by software in other parti-

tions. We might try to arrange for this expectation to be satisfied in the presence of

the unique-file-name restriction by allocating disjoint name spaces to each partition.

But then a fault in the software of one partition could cause it to create a file from

another's name space--and thereby cause a subsequent file creation in that other

partition to fail. This example shows that covert channels for information flow raise

issues that are relevant to partitioning, and that examination of how security has

dealt with these channels may be of use in partitioning.

Another potential problem with access control formulations of security is that

they depend on informal understandings of what "read" and "write" accesses really

mean. We can construct perverse systems in which these terms are given incorrect

(e.g., reversed) interpretations and that satisfy the letter of an access control policy

while violating its spirit [71].

Covert channels and perverse interpretations are both symptoms of the real prob-

lem with access control as we have used it: it is a mechanism for implementing, not

an instrument for specifying, security policies. An adequate specification should get

at the "intent" that underlies a security policy in a convincing manner. It should

then be possible to prove that an implementation in terms of access control cor-

rectly enforces the policy. Problems of completeness, covert channels, and perverse

interpretations should all be eliminated by a sound approach of this kind. The next

section examines such approaches.

4.1.2 Noninterference

To repair the problems with access control, we need to be more explicit about our

system model: we need to specify how a system computes and interacts with its

environment, how inputs and outputs are observed, and how subjects and objects

are identified. Then we can specify security in terms of constraints on the observable

behavior of the system, without needing to describe mechanisms to enforce those

constraints (although we would hope to be able to describe such mechanisms at a

later stage of development, and to verify that they enforce the desired policy).
The most successful treatments of this kind are all variations on a formulation

called noninterference that was introduced by Goguen and Meseguer in 1992 [33],

4.1. Data and Information Flow 43

although the key idea was adumbrated five years earlier [30]. That key idea is that

if there is no flow of information from one security classification to another, then

the behavior perceived by subjects of the second ("lower") classification should be

independent of any activity by subjects of the first ("higher") classification. In

particular, the behavior perceived by the second classification should be unchanged

if all activity by the first is removed. The precise details depend on the formal model

of computation employed, but the traditional treatment uses a finite automaton as

the system model: the automaton changes state and produces an output in response

to inputs, which are labeled with their security level. A relation p -,_ q indicates

whether level p is allowed to convey information to or interfere with level q; its

negation is the noninterference relation _t_, which is considered a specification of

the desired security policy. A sequence of inputs a is purged for level p by removing

all inputs from levels that may not interfere with p; this purged input sequence

is denoted a/p. Starting from some initial state so, the state of the automaton

after consuming the input sequence a is run(so, a), while that after consuming the

purged sequence is run(so, a/p). The noninterference formulation of security then

requires that any level p input must produce the same output in both these states.

The intuition is that this ensures that no experiment conducted at level p can reveal

anything about the presence or absence of earlier inputs from levels that should not

interfere with p.

The noninterference formulation of security is stated in terms of a system's

behavior in response to a sequence of inputs. An unwinding theorem reduces this to

three conditions on its behavior with respect to individual inputs. These conditions

are stated in terms of each level's "view" of the system state (intuitively, if the system

state is thought of as consisting of different components "belonging" to each level,

then level p's view of the state comprises its own component and the components

of all the levels that are allowed to interfere with p). If the level p views of two

states are the same, we say these states "look the same to p" (technically, this is an

equivalence relation on states).

Output Consistency: if two states look the same to p, then a level p input must

produce the same output in both states.

Step Consistency: if two states look the same to p, then the states that result

from applying the same input (of any level) to both states must also look the

same to p.

Local Respect (for _): the system state must look the same to p before and

after an input of a level that is noninterfering with p.

It is straightforward to prove that these conditions are sufficient to imply noninter-

ference. The proof is formalized and mechanically verified in one of the tutorials for

the PVS verification system [94].

44 Chapter 4. Comparison With Computer Security

A connection between the noninterference and access control notions of security

can be established by interpreting the unwinding conditions in access control terms.

We suppose that the system state is a function from objects to values and that

each object has a level. Inputs of level p are reinterpreted as actions performed

by a subject of level p. Then we suppose that access control enforces the following

Reference Monitor Assumptions.

• The output produced by an action depends only on the values of objects to

which the subject performing the action has read access.

• If an action changes the value of any object, then its new value depends only

on the values of objects to which the performing subject has read access.

• An action may change the values only of objects to which the performing

subject has write access.

With these assumptions, access control can enforce the unwinding conditions

by setting up the controls as follows (these are essentially the Bell and La Padula

conditions).

1. If p _-_ q, then the objects to which subjects of level p have read access must

be a subset of those to which subjects of q have read access, and

2. A subject of level p may have write access to an object for which a subject of

level q has read access only if p _-_ q.

The connection between the two formulations is established by interpreting a sub-

ject's "view" as the values of all the objects to which it has read access. A proof

is given in [89, Section 2.1]. The proof requires formalizing the reference monitor

assumptions, which is surprisingly difficult to do correctly (Popek and Farber [82],

who first recognized the importance of these conditions, made errors in formalizing

them).

Contrary to early expectations (e.g., [34]), standard noninterference requires

the interferes relation _-_ to be transitive [89]. All such transitive relations are

equivalent to multilevel security policies, and the two conditions on access control

enumerated in the previous paragraph are likewise equivalent to the Bell and La

Padula properties in these cases [89, Section 3.1].

Because they imply a partial ordering on security levels, multilevel security poli-

cies do not seem to capture the concerns of partitioning all that closely, but intran-

sitive policies (that is, those where _-_ is not required to be transitive) seem more

promising. Intransitive policies capture the additional security restrictions known

as channel control [87] or type enforcement [13], which are concerned not only with

whether information may flow from one place to another, but with the paths through

which it may flow. Channel control security policies can be represented by directed

4.1. Data and Information Flow 45

graphs, where nodes represent security domains and edges indicate the direct in-

formation flows that are allowed. The paradigmatic example of a channel-control

problem is a controller for end-to-end encryption, as portrayed in Figure 4.1.

BYPASS

RED BLACK

CRYPTO

Figure 4.1: Allowed Information Flows for an Encryption Controller

Plaintext messages arrive at the RED side of the controller; their bodies are

sent through the encryption device (CRYPTO); their headers, which must remain in

plaintext so that network switches can interpret them, are sent through the BYPASS.

Headers and encrypted bodies are reassembled in the BLACK side and sent out onto

the network. The security policy we would like to specify here is the requirement

that the only channels for information flow from RED to BLACK must be those

through the CRYPTO and the BYPASS (it is a separate problem to specify what those

components must do). Notice that the edges indicating allowed information flows in

this example are not transitive: information is allowed to flow from RED to BLACK

via the CRYPTO and BYPASS, but must not do so directly.

Noninterference can be extended to intransitive policies by substituting a more

complicated purge function for the standard one. When p _/* q, the usual require-

meat is that deleting all actions performed by p should produce no change in the

behavior of the system as perceived by q. This is too strong if we also have the

assertions p _ r and r _ q. Surely we should only delete those actions of p that are

not followed by actions of r (in the CRYPTO example, RED, BLACK, and BYPASS or

CRYPTO take the roles of p, q, r, respectively). This insight, and a definition of the

generalized purge function, were given by Haigh and Young [37], together with corre-

46 Chapter 4. Comparison With Computer Security

sponding unwinding conditions. Unfortunately, one of their unwinding conditions is

incorrect; correct conditions were given, and formally verified, by Rushby [89]. These

unwinding conditions simply replace the step consistency condition by a weak form.

Weak Step Consistency: if two states look the same to p, and also look the same

to q, then the states that result from applying the same input of level q to

both states must also look the same to p.

The corresponding conditions for access control enforcement consist simply of the

second of the two conditions given on page 44. 2
The formal statements of standard and intransitive noninterference use an au-

tomaton as their formal system model and therefore apply straightforwardly only

to a single monolithic system. To examine the interactions of multiple, distributed

systems, more general models are required--for example, transition relations or pro-

cess algebras--and it is necessary to admit nondeterminism. Nondeterminism arises

naturally in concurrent systems, because there is generally no system-wide coordi-

nation of the rate at which different components proceed; hence, interactions can

occur in different orders in otherwise identical runs, and the behaviors perceived

in those runs can diverge markedly (this is why it is so hard to debug concurrent

systems). To accommodate this system-level nondeterminism, noninterference for

concurrent systems is formulated to require that the set of behaviors possible in a

given scenario is unchanged at a given level when interactions are purged in some

suitable way. One problem with this formulation is that it does not define a property
in the technical sense.

A system can be identified with the set of runs that it can produce (a run is a

sequence or "trace" of inputs, outputs, and other significant interactions). A speci-

fication is likewise a set of runs, and a system satisfies a specification if its runs are a

subset of those of the specification. A set of runs is called a property, so that specifi-

cations and systems can both be considered properties. Special classes of properties

called safety and liveness play an important role in formal methods of analysis, and

it can be shown that every property can be expressed as the conjunction of a safety

and a liveness property [5]. Security, however, is not a property in this sense: it is

not a set of runs, but a set of sets of runs [72]. This means that standard methods

for deriving or verifying an implementation that satisfies a given specification do

not work for security--because these methods apply only to properties.

Another problem when noninterference is extended to concurrent systems in the

manner just described is that it is not compositional: that is, two systems individ-

ually satisfying some noninterference policy can be combined to yield a composite

2This might seem to suggest that the first condition on 44 is implied by the second when the

policy is transitive. In fact, this is not necessarily so for a given set of access controls, but it will

be possible to construct another set (i.e., a different assignment of read and write permissions)

that will satisfy both conditions. This is a consequence of the "nesting property" for transitive

policies [89, Theorem 5].

4.1. Data and Information Flow 47

system that does not satisfy that policy [70]. Many alternative formulations of non-

interference were proposed for concurrent systems in the attempt to overcome this

unattractive result. Unfortunately, those that were compositional were either very

unintuitive (having no plausible interpretation as a natural security concern), or

were excessively restrictive (and unlikely to be satisfied by practical systems). A

partial resolution was provided by Roscoe, who suggested that the difficulty was due

to a failure to appreciate the significance of nondeterminism when contemplating

security [85].

The problem with nondeterminism is that it can sometimes be resolved in a way

that depends on unsecure information flow. A typical example would be a system

with two levels, LOW and HIGH where HIGH is required to be noninterfering with

LOW. Inputs to LOW cause the outputs odd or even to be generated nondetermin-

istically unless there have been any high inputs, in which case the LOW output is

odd or even according to the oddness or evenness of the last HIGH input (the HIGH

inputs are assumed to be positive integers). This example satisfies most definitions

of noninterference for concurrent systems because the set of possible behaviors ob-

servable at the LOW level is unchanged by the presence or absence of HIGH-level

activity--yet it plainly violates any reasonable interpretation of "secure system."

The violation is exposed when the system is composed with one that generates only

even numbers on the HIGH input. Roscoe excluded such paradoxical constructions

by requiring their component systems to have behavior that is deterministic at each

security level. Roscoe's insistence on determinism also suggests a resolution to an-

other difficulty that had plagued most earlier treatments: noninterference is not

preserved under refinement. Refinement in this (process algebra) context means a

reduction in nondeterminism, and it poses the same challenge to noninterference as

composition. Roscoe's treatment is couched in the formalism of CSP [39], where a

process is deterministic if it is free of "divergence" and never has a choice between

"accepting" and "refusing" an event [86]. The relationship between this treatment

and traditional interpretations of determinism and security in state machines is one

that requires clarification.

There is another sense of refinement for which security in general (not only its

noninterference formulations) is not preserved. This is the notion of refinement in the

sense of elaboration, where more mechanisms and details are added to a specification

in order to obtain an implementation that is effectively executable. Under the

standard notion of correctness for such refinements, it is necessary only to show

that the properties of the specification are implied by those of the implementation:

the implementation is required to do at least as much as the specification, but it is

not prohibited from doing more. An implementation of the specification suggested

by Figure 4.1, for example, must provide at least the four communications channels

shown, but the standard notion of correct refinement would not prevent it adding a

direct communications channel between RED and BLACK--despite the fact that the

48 Chapter 4. Comparison With Computer Security

absence of such a channel is the whole point of the design. For security, it is necessary

to constrain the notion of correct refinement so that the implementation does not

add capabilities that are absent in the specification. Clearly the implementation

must contain more details and mechanisms than the specification (else it is surely

not an implementation), but for secure refinement these mechanisms and details

must have no consequences on the behavior that can be perceived at the originally

specified interfaces. The formal characterization of this requirement is given in

terms of faithful interpretations and is due to Moriconi, Qian, Riemenschneider,

and Gong [74].

4.1.3 Separability

Using Roscoe's perspective, an adequate treatment for distributed channel-control

security might be achieved by taking the nondeterministic composition of determin-

istic systems, each characterized by intransitive noninterference. Some architectural

refinement to a more detailed implementation level could be obtained using faithful

interpretations, and the restrictions within each system could then be enforced by

access control, using the derivation from the unwinding conditions described earlier.

(As far as I know, nobody has determined whether the formal details of the various

models support this combination, nor whether satisfactory properties can be derived

for the combination, but it seems plausible.) However, the resulting model would

still be rather abstract for the purpose of deriving, for example, conditions on how

a single processor should implement the RED, BYPASS, and BLACK components of

Figure 4.1 (the CRYPTO is usually an external device).

An approach called separability was proposed for this problem by Rushby [87].
The idea is easiest to understand when no communications are allowed between the

separate components. Then the idea is that the implementation should provide the

appearance of a separate, dedicated processor to each component. The real pro-

cessor is time shared, so that it sometimes performs instructions on behalf of one

component and sometimes on behalf of another. The requirements for separability

can be expressed in terms of abstraction functions that give the "view" of the pro-

cessor perceived by each component. For example, if we have just two components,

RED and BLACK, and (I)R and (I)B denote their respective abstraction functions, then

the requirement when the processor is executing instructions on behalf of RED is

that the following diagram should commute.

_R

OpR
b

A (I) R

op

4.1. Data and Information Flow 49

That is to say, the state change in the physical processor caused by executing the

instruction op should be consistent with execution of the "abstract" operation oPR

on RED'S view of the processor. At the same time, BLACK'S view of the processor

should be unchanged, as expressed by the following diagram.

op

Because I/O devices can directly observe and change aspects of the real proces-

sor's internal state (by reading and writing its device registers, for example), and

can also influence its instruction sequencing mechanism (by raising interrupts), the

activity of these devices is relevant to security. Consequently, we must impose condi-

tions on their behavior. Expressed informally (and only from the RED component's

point of view), these conditions are the following.

. If ¢PR(a) = ¢PR(r) and activity by a RED I/O device changes the state of the

real processor from a to a', and the same activity would also change it from r

to r', then ¢PR(a') = ¢PR(r') (i.e., state changes in the RED view caused by RED

I/O activity must depend only on the activity itself and the previous state of

the RED view).

. If activity by a non-RED I/O device changes the state of the real processor

from a to r, then ¢PR(a) = ¢PR(r) (i.e., non-RED I/O devices cannot change

the state of the RED view).

3. If OR(a) = OR(r), then any outputs produced by RED I/O devices must be
the same in both cases.

4. If ¢PR(a) = ¢PR(r), then the next operation executed on behalf of the RED

component must also be the same in both cases.

Separability was proposed before formal treatments of concurrent systems had

been fully developed, so the justification of the above conditions presented in [88] is

not fully satisfactory. Furthermore, neither the informal nor the formal presentation

deals with allowed communications channels between components. The proposal

in [87] is to remove the mechanisms intended to provide the desired communications

channels and then verify, using the conditions above, that the components of the

resulting system are isolated. Jacob [47] noted that this does not exclude a particular

kind of covert channel (called a "legitimate" channel) that piggybacks undesired
clandestine communication on the desired channel.

5O Chapter 4. Comparison With Computer Security

A more modern treatment [92] derives the conditions for separability with com-
munications from those for intransitive noninterference. This treatment weakens

the "triangular" commutative diagram of strict separability so that it applies only

if RED _Z, BLACK (this derives from the "local respect for _Z," unwinding condition)

and, when RED _ BLACK, it replaces the "rectangular" diagram by the following

condition (which is based on the "weak step consistency" unwinding condition).

• = A = > =

Notice that this last condition does not use the abstract operation opR that appears

in the "rectangular" commutative diagram. This is because we do not really care

what this operation is, only that _B(op(a)) should be functional in _B(a), and the

formula above expresses this directly.

4.2 Integrity Policies

The previous sections have considered computer security notions related to the un-

desired disclosure of information. There are similar notions related to the modifica-

tion of information, where the main concern is to ensure integrity of the protected

information. Integrity is related to the "reliability" or "quality" of information:

information of high integrity should not be allowed to become contaminated by in-

formation of low integrity. This requirement can be treated as a strict dual to the

Bell and La Padula security policy (that is, a subject can only read "up" and write

"down" in integrity level), and is known as the Biba integrity policy [12].

Clark and Wilson [15] argued that the integrity of information is also a function

of the operations that are performed on it, and the identity of those who invoke

those operations. A user should not be able to invoke arbitrary operations on high-

integrity information, but only certain well-formed transactions, and the admissible

transactions might be determined by the state of the data, the identity of the user,

and other factors. In commercial environments, the transactions available to a user

are often governed by requirements for separation of duties: a user who authorizes

a purchase should not be the same as the one who selects the vendor.

Other similar models for integrity have been proposed, and there has been con-

siderable investigation of whether these or the Clark-Wilson model can be enforced

by adaptations of security mechanisms developed to control disclosure [78].

4.3 Timing Channels and Denial of Service

Most work on formalizing security has focused on the data and information flow

issues described in the previous sections. In partitioning terms, these all concern

issues in spatial partitioning. There are, however, two topics in computer security

4.3. Timing Channels and Denial of Service 51

that correspond to issues in temporal partitioning: timing channels and denial of
service.

Timing channels (they were called "covert channels" when first identified [59])

are mechanisms for clandestine information flow that work by modulating the time

when some events occur, or the rate at which they occur. For example, a process

can choose whether or not to give up its time slice early. If only two processes are

running, the other process can use the time at which it receives control to infer the

choice made by the other process [59]. More generally, the decisions of a real-time

scheduler can be manipulated to provide a channel for information flow [16]. Other

timing channels modulate the load or contention on some system resource (e.g., the

system bus [42]) or parameters affecting performance (e.g., the time to seek a disk

track is affected by whether the previous seek was to a nearby or distant track [49];

the time to access a memory page will be affected by whether or not it was previously

swapped out to disk [95]).

Where they cannot be removed, timing channels are typically rendered harmless

either by reducing contention, or by introducing randomness into the behavior of

the resource being manipulated [36, 67, 104], or by reducing the precision of the

various "clocks" (e.g., time-of-day clocks, timers, instruction loops, asynchronous

I/O performance) by which a process can measure the passage of time [42]. These

measures do not block a timing channel, but they introduce sufficient noise that its

bandwidth is reduced to acceptable levels (typically less than 10 bits per second).

Whereas the concerns of partitioning and security are quite close in the case of

storage channels, they diverge for timing channels. The very existence of a timing

channel is unacceptable in a partitioned system, since it indicates that one partition

can change the temporal behavior observed by another. Similarly, the remedies

used in security to reduce the bandwidth of timing channels are worse than the

original problem from the perspective of partitioning, because they introduce further

unpredictability into system behavior.

Formal analysis of pure timing channels is generally based on information the-

ory (e.g., [75, 76]), but there is dispute over whether some channels (e.g., the disk

arm channel) really are timing channels, storage channels, or a combination of the

two [112]. Consequently, formal description and analysis of such channels is diffi-

cult, and informal methods are generally employed. As described in Section 3.1.2,

static partition scheduling requires implementation choices (strict determinism, no

concurrent I/O) that eliminate the mechanisms that could serve as timing channels.

In systems that do not require such strict temporal partitioning, the techniques used

in computer security to identify timing channels [112] might help reveal unexpected

sources of temporal interference.

Denial of service can be seen as an extreme type of timing channel: the perceived

performance of some resource is reduced to an unacceptable level, rather than merely

modulated. In the limit, the resource may become unavailable to some processes.

52 Chapter 4. Comparison With Computer Security

The possibility of this limiting case is usually equivalent to the existence of a storage

channel. For example, if file space is shared between two processes, then one can

deny service to the other by consuming all available space--but this is also a chan-

nel by which one process can convey information to another (the receiving channel

attempts to create a file: success is taken as a 1 bit, failure as a 0; the transmitting

process determines the outcome by consuming and releasing space). Because denial

of service is related to timing and storage channels, it can be prevented by enforcing

strict spatial and temporal partitioning. In general-purpose systems, the strictness

of these mechanisms may be considered undesirable: they would require, for exam-

ple, fixed per-process allocations of file space. Attempts to provide flexible resource

allocation without incurring the risk of denial of service require "user agreements"

that place limits on the demands that each process may place on each resource and

that are enforced by a "resource allocation monitor" or "denial of service protection

base" [63, 73] (these are somewhat similar to the quality of service ideas used in

multimedia systems [102]). Formalizations of these approaches are stated in terms

of fair or maximum waiting times [32,113].

These more elaborate treatments of denial of service are probably unacceptable

in strictly partitioned systems because they still allow the response perceived by

one application to be influenced, even if not denied, by another. They may also

be unnecessary in partitioned systems because the requirements for temporal parti-

tioning seem stronger than those for denial of service: thus, denial of service should

automatically be excluded in any system that provides strict temporal partitioning.

Formal justification for this claim would be an interesting and worthwhile exercise.

4.4 Application to Partitioning

The formal models for computer security reviewed in the previous sections pro-

vide several ideas that seem applicable to partitioning. In particular, the central

idea of noninterference--that the behavior perceived at one security level should

be independent of actions at higher levels--can be reinterpreted in the context of

partitioning and fault tolerance by supposing that ordinary behavior should be inde-

pendent of faults: that is, faults are actions invoked by the environment, which is at

a level that should be noninterfering with the level of ordinary users. This approach

has been explored by Weber and by Simpson [99,100,109,110]. It works well as a

specification for partitioning when the partitions are completely isolated (in which

case it is equivalent to the strict form of separability): if we have two partitions A

and B that do not communicate in any way, then saying that the behavior of B must

be independent of that of A is a good way to say that faults in A must not affect

B. It works less well when A has to communicate with B: noninterference says only

that A interferes with B and does not discriminate between legitimate interference

4.4. Application to Partitioning 53

(the known communication stream) and illegitimate (e.g., changes to B's private

data).

This example shows that the concerns of security are, in a certain sense, too

coarse to capture those of partitioning: security is concerned only with whether

information can flow from A to B, not with how the flow can affect B. Channel

control and its formalization by intransitive noninterference does allow the desired

discrimination, but only at the cost of introducing a third component C to represent

the buffer used for the intended A to B communication stream. Using intransitive

flows, we would specify A _ C _ B and A _ B. This approach seems to capture

some of the concerns of partitioning, but the introduction of the third component
is artificial and unattractive.

A more fundamental objection to the idea that noninterference can serve as a

model for partitioning is that partitioning is a safety property (because violations

of partitioning occur at specific points in specific runs) whereas noninterference

is not even a "property" (recall page 46). This suggests that noninterference is

an unnecessarily subtle notion for partitioning, and that something simpler should
suffice.

There is another sense in which the concerns of security diverge from those of

partitioning: security assumes that all components are untrustworthy and that the

mechanisms of security must be set up so that only allowed information flows occur,

no matter how the components behave. In partitioning, however, we are concerned

only with misbehavior by faulty partitions and are willing to trust nonfaulty compo-

nents to safeguard their own interests. For example, suppose that two components

A and B are statically scheduled and that each begins execution at a known entry

point each time it is scheduled (this is the restart model of partition swapping).

Suppose further that each has an area of "scratchpad" memory that is assumed to

be "dirty" at the start of each execution: that is, the software in each of A and B

is verified to perform its functions with no assumptions on the initial contents of

the scratchpad memory. Finally, suppose that A and B are required to be isolated

from one another. Then the scratchpad can be shared between A and B under the

partitioning interpretation of isolation, but not under the corresponding security

interpretation. The reason is that when B receives control, the scratchpad may con-

tain data written by A; under the security interpretation we may assume nothing

about even a nonfaulty B (in particular, that it will not "peek" at the data left by

A), and so the scratchpad is a channel for information flow from A to B in violation

of the isolation security policy. In the partitioned system, we accept (or specify)

that a nonfaulty B does not do this, and our concern is to be sure that A (even

if faulty) does not write outside its own memory or the scratchpad. Notice that

this arrangement would not be safe in the restoration model of partition swapping,

because A could preempt B, change its scratchpad, and then allow B to resume.

54 Chapter 4. Comparison With Computer Security

These examples demonstrate that the concerns of partitioning and security, al-

though related, do not coincide. Thus, although formal treatments of partitioning

may possibly be developed using ideas from computer security, they cannot be based

directly on existing security models. Research to develop formal models of parti-

tioning, and to refine the distinctions between partitioning and security, would be

illuminating for both fields.

Chapter 5

Conclusion

We have reviewed some of the motivation for integrated modular avionics and the

requirement for partitioning in such architectures. We then considered mechanisms

for achieving partitioning, the interactions between these mechanisms and those for

system structuring, scheduling, and fault tolerance, and issues in providing assurance

for partitioning. Finally, we reviewed work in computer security that has similar

motivation to partitioning.

Although partitioning is a very strong requirement and imposes many restric-

tions, there is a surprisingly wide range of architectural choices that can achieve

adequate partitioning. The space of these design choices is seen most clearly in

scheduling, where both static and dynamic schedules seem able to combine flexibil-

ity with highly assured partitioning.

The strongest need for future work is to develop the narrative description given

here into a mathematical framework that will permit rigorous analysis of archi-

tectural choices for partitioned systems and provide a strong basis for the assur-

ance of individual designs. There is already some significant work in this direc-

tion [24, 26, 106,111], but great opportunities remain, particularly with respect to

distributed systems and temporal partitioning. We are examining these topics in

current work and will describe our results in a successor to this report.

55

56

References

[1] ARINC Specification 651: Design Guidance for Integrated Modular Avionics.

Aeronautical Radio, Inc, Annapolis, MD, November 1991. Prepared by the

Airlines Electronic Engineering Committee.

[2] ARINC Specification 659: Backplane Data Bus. Aeronautical Radio, Inc, An-

napolis, MD, December 1993. Prepared by the Airlines Electronic Engineering
Committee.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

ARINC Specification 629: Multi-Transmitter Data Bus; Part 1, Technical De-

scription (with five supplements); Part 2, Application Guide (with one supple-

ment). Aeronautical Radio, Inc, Annapolis, MD, December 1995/6. Prepared

by the Airlines Electronic Engineering Committee.

ARINC Specification 653: Avionics Application Software Standard Interface.

Aeronautical Radio, Inc, Annapolis, MD, January 1997. Prepared by the

Airlines Electronic Engineering Committee.

B. Alpern and F. B. Schneider. Defining liveness. Information Processing

Letters, 21(4):181-185, October 1985.

Gregory R. Andrews and Richard P. Reitman. An axiomatic approach to

information flow in programs. A CM Transactions on Programming Languages

and Systems, 2(1):56-76, January 1980.

C. R. Attanasio, P. W. Markstein, and R. J. Phillips. Penetrating an operating

system: A study of VM/370 integrity. IBM Systems Journal, 15(1):102-116,
1976.

Algirdas Avi2ienis and Yutao He. The taxonomy of design faults in COTS

microprocessors. In Rushby [93], pages 1-17.

Henry M. Ballard, David M. Bicksler, Thomas Taylor, and H. O. Lubbes.

Ensuring process security in the ALS/N environment. In COMPASS '86

(Proceedings of the First Annual Conference on Computer Assurance), pages

60-68, Washington, DC, July 1986. IEEE Washington Section.

57

58 References

[lO]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

D. E. Bell and L. J. La Padula. Secure computer system: Unified exposition

and Multics interpretation. Technical Report ESD-TR-75-306, Mitre Corpo-

ration, Bedford, MA, March 1976.

Brian Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Gun Sirer, David

Becker, Marc Fiuczynski, Craig Chambers, and Susan Eggers. Extensibility,

safety and performance in the SPIN operating system. In Fifteenth A CM

Symposium on Operating System Principles, pages 267-284, Copper Moun-

tain, CO, December 1995. (ACM Operating Systems Review, Vol. 29, No.

5).

K. J. Biba. Integrity considerations for secure computer systems. Technical

Report MTR 3153, Mitre Corporation, Bedford, MA, June 1975.

W. E. Boebert and R. Y. Kain. A practical alternative to hierarchical in-

tegrity policies. In Proceedings 8th DoD/NBS Computer Security Initiative

Conference, pages 18-27, Gaithersburg, MD, September 1985.

Mikhail Chernyshov. Post-mortem on failure. Nature, 339:9, May 4, 1989.

David D. Clark and David R. Wilson. A comparison of commercial and mili-

tary computer security policies. In Proceedings of the Symposium on Security

and Privacy, pages 184-194, Oakland, CA, April 1987. IEEE Computer Soci-

ety.

Raymond K. Clark, Douglas M. Wells, Ira B. Greenberg, Peter K. Boucher,

Teresa F. Lunt, Peter G. Neumann, and E. Douglas Jensen. Effects of mul-

tilevel security on real-time applications. In Proceedings of the Ninth Annual

Computer Security Applications Conference, pages 120-129, Orlando, FL, De-

cember 1993. IEEE Computer Society.

Henry S. F. Cooper Jr. Annals of space (the planetary community)--part 1:

Phobos. New Yorker, pages 50-84, June 11, 1990.

Henry S. F. Cooper Jr. The Evening Star: Venus Observed. Farrar Straus

Giroux, New York, NY, 1993.

Robert D. Culp and George Bickley, editors. Proceedings of the Annual Rocky

Mountain Guidance and Control Conference, volume 81 of Advances in the As-

tronautical Sciences, Keystone, CO, February 1993. American Astronautical

Society.

Sadegh Davari and Lui Sha. Sources of unbounded priority inversions in real-

time systems and a comparative study of possible solutions. A CM Operating

Systems Review, 26(2):110-120, April 1992.

References 59

[21]

[22]

D. E. Denning and P. J. Denning. Certification of programs for secure infor-

mation flow. Communications of the ACM, 20(7):504-513, July 1977.

David L. Detlefs. An overview of the Extended Static Checking system. In

First Workshop on Formal Methods in Software Practice (FMSP '96), pages

1-9, San Diego, CA, January 1996. Association for Computing Machinery.

[23] Profibus Standard: DIN 19245. Deutsche Industrie Norm, Berlin, Germany.
Two volumes.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Ben L. Di Vito. A formal model of partitioning for integrated modular avionics.

NASA Contractor Report CR-1998-208703, NASA Langley Research Center,

August 1998.

Eileen M. Dukes. Magellan attitude control mission operations. In Culp and

Bickley [19], pages 375-388.

Bruno Dutertre and Victoria Stavridou. A model of non-interference for inte-

grating mixed-criticality software components. In Rushby [93], pages 283-318.

The interfaces between flightcrews and modern flight deck systems. Report of

the FAA human factors team, Federal Aviation Administration, 1995. Avail-

ableat http ://www.faa.gov/avr/afs/interfac, pdf.

System Design and Analysis. Federal Aviation Administration, June 21, 1988.

Advisory Circular 25.1309-1A.

RTCA Inc., Document RTCA//DO-178B. Federal Aviation Administration,

January 11, 1993. Advisory Circular 20-115B.

R. J. Feiertag, K. N. Levitt, and L. Robinson. Proving multilevel security of

a system design. In Sixth A CM Symposium on Operating System Principles,

pages 57-65, November 1977.

Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau, Albert Lin, and Olin

Shivers. The Flux OSKit: A substrate for kernel and language research. In

SOSP-16 [101], pages 38-51.

Virgil D. Gligor. A note on denial-of-service in operating systems. IEEE

Transactions on Software Engineering, SE-10(3):320-324, May 1984.

J. A. Goguen and J. Meseguer. Security policies and security models. In

Proceedings of the Symposium on Security and Privacy, pages 11-20, Oakland,

CA, April 1982. IEEE Computer Society.

60 References

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

J. A. Goguen and J. Meseguer. Inference control and unwinding. In Proceed-

ings of the Symposium on Security and Privacy, pages 75-86, Oakland, CA,

April 1984. IEEE Computer Society.

B. D. Gold, R. R. Linde, and P. F. Cudney. KVM/370 in retrospect. In

Proceedings of the Symposium on Security and Privacy, pages 13-23, Oakland,

CA, April 1984. IEEE Computer Society.

James W. Gray, III. On introducing noise into the bus-contention channel. In

SSP'93 [45], pages 90-98.

J. Thomas Haigh and William D. Young. Extending the noninterference

version of MLS for SAT. IEEE Transactions on Software Engineering, SE-

13(2):141-150, February 1987.

Hermann H/irtig, Michael Hohmuth, Jochen Liedtke, and Sebastian

SchSnberg. The performance of #-kernel-based systems. In SOSP-16 [101],

pages 66-77.

C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall Inter-

national Series in Computer Science. Prentice Hall, Hemel Hempstead, UK,
1985.

Harry Hopkins. Fit and forget fly-by-wire. Flight International, pages 89-92,

December 3, 1988.

Kenneth Hoyme and Kevin Driscoll. SAFEbus TM. IEEE Aerospace and Elec-

tronic Systems Magazine, 8(3):34-39, March 1993.

Wei-Ming Hu. Reducing timing channels with fuzzy time. In SSP'91 [44],

pages 8-20.

M. Huguet. The protection of the processor status word of the PDP-11/60.

ACM Computer Architecture News, 10(4):27-30, June 1982.

Proceedings of the Symposium on Security and Privacy, Oakland, CA, May

1991. IEEE Computer Society.

Proceedings of the Symposium on Security and Privacy, Oakland, CA, May

1993. IEEE Computer Society.

ISO Standard 11898: Road Vehicles--Interchange of Digital Information--

Controller Area Network (CAN) for High-Speed Communication. International

Standards Organization, Switzerland, November 1993.

References 61

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Jeremy Jacob. A note on the use of separability for the detection of covert

channels. Cipher (Newsletter of the IEEE Technical Committee on Security

and Privacy), pages 25-33, Summer 1989.

M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, H_ctor M.

Bricefio, Russell Hunt, David Mazi_res, Thomas Pinckney, Robert Grimm,

John Jannotti, and Kenneth Mackenzie. Application performance and flexi-

bility on Exokernel systems. In SOSP-16 [101], pages 52-65.

Paul A. Karger and John C. Wray. Storage channels in disk arm optimization.

In SSP'91 [44], pages 52-61.

Rick Kasuda and Donna Sexton Packard. Spacecraft fault tolerance: The

Magellan experience. In Culp and Bickley [19], pages 249-267.

Philip J. Koopman, Jr. Perils of the PC cache. Embedded Systems Program-

ruing, 6(5):26-34, May 1993.

Herman Kopetz and R. Nossal. Temporal firewalls in large distributed real-

time systems. In 6th IEEE Workshop on Future Trends in Distributed Com-

puting, pages 310-315, Tunis, Tunisia, October 1997. IEEE Computer Society.

Hermann Kopetz. Should responsive systems be event-triggered or time-

triggered? IEICE Transactions on Information and Systems, E76-D(11):1325-

1332, November 1993. Institute of Electronics, Information, and Communica-

tions Engineers, Japan.

Hermann Kopetz. Real-Time Systems: Design Princples for Distributed Era-

bedded Applications. The Kluwer International Series in Engineering and Com-

puter Science. Kluwer, Dordrecht, The Netherlands, 1997.

Hermann Kopetz. A comparison of CAN and TTP. Technical report, Tech-

nische Universit/it Wien, Vienna, Austria, March 1998.

Hermann Kopetz. The time-triggered (TT) model of computation. Technical

report, Technische Universit/it Wien, Vienna, Austria, March 1998.

Hermann Kopetz and Giinter Griinsteidl. TTP--a protocol for fault-tolerant

real-time systems. IEEE Computer, 27(1):14-23, January 1994.

A. A. Lambregts. Automatic flight controls: Concepts and methods. Draft

paper by FAA National Resource Specialist for Advanced Controls, January
1998.

B. W. Lampson. A note on the confinement problem. Communications of the

ACM, 16(10):613-615, October 1973.

62 References

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

C. E. Landwehr. A survey of formal models for computer security. A CM

Computing Surveys, 13(3):247-278, September 1981.

John P. Lehoczky, Lui Sha, and Ye Ding. The rate monotonic scheduling

algorithm--exact characterization and average case behavior. In Real Time

Systems Symposium, pages 166-171, Santa Monica, CA, December 1989. IEEE

Computer Society.

K. Rustan M. Leino and Rajeev Joshi. A semantic approach to secure infor-

mation flow. Technical Report 032, Digital Systems Research Center, Palo

Alto, CA, December 1997.

Jussipekka Leiwo and Yuliang Zheng. A method to implement a denial of

service protection base. In Vijay Varadharajan, Josef Pieprzyk, and Yi Mu,

editors, Information Security and Privacy: Second Australasian Conference

(ACISP _97), pages 90-101, Sydney, Australia, July 1997. Volume 1270 of

Lecture Notes in Computer Science, Springer-Verlag.

S. B. Lipner. A comment on the confinement problem. In Fifth A CM Sympo-

slum on Operating System Principles, pages 192-196. ACM, 1975.

C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming

in a hard-real-time environment. Journal of the ACM, 20(1):46-61, January
1973.

C. Douglass Locke. Software architecture for hard real-time applications:

Cyclic executives vs. priority executives. Real-Time Systems, 4(1):37-53,
March 1992.

Keith Loepere. Resolving covert channels within a B2 class secure system.

ACM Operating Systems Review, 19(3):9-28, July 1985.

Yoshifumi Manabe and Shigemi Aoyagi. A feasibility decision algorithm

for rate monotonic and deadline monotonic scheduling. Real-Time Systems,

14(2):171-181, March 1998.

R. A. Mayer and L. H. Seawright. A virtual machine time sharing system.

IBM Systems Journal, 9(3):199-218, 1970.

Daryl McCullough. Specifications for multi-level security and a hook-up prop-

erty. In Proceedings of the Symposium on Security and Privacy, pages 161-166,

Oakland, CA, April 1987. IEEE Computer Society.

John McLean. A comment on the "basic security theorem" of Bell and La

Padula. Information Processing Letters, 20:67-70, 1985.

References 63

[72] John McLean. A general theory of composition for trace sets closed under se-

lective interleaving functions. In Proceedings of the Symposium on Research in

Security and Privacy, pages 79-93, Oakland, CA, May 1994. IEEE Computer

Society.

[73] Jonathan K. Millen. A resource allocation model for denial of service. In

Proceedings of the Symposium on Research in Security and Privacy, pages

137-147, Oakland, CA, May 1992. IEEE Computer Society.

[74] Mark Moriconi, Xiaolei Qian, R. A. Riemenschneider, and Li Gong. Secure

software architectures. In Proceedings of the Symposium on Security and Pri-

racy, pages 84-93, Oakland, CA, May 1997. IEEE Computer Society.

[75] Ira S. Moskowitz, Steven J. Greenwald, and Myong H. Kang. An analysis

of the timed Z-channel. In Proceedings of the Symposium on Security and

Privacy, pages 2-31, Oakland, CA, May 1996. IEEE Computer Society.

[76] Ira S. Moskowitz and Alan R. Miller. Simple timing channels. In Proceedings

of the Symposium on Security and Privacy, pages 56-64, Oakland, CA, May

1994. IEEE Computer Society.

[77] A Nadesakumar, R. M. Crowder, and C. J. Harris. Advanced system concepts

or future civil aircraft--an overview of avionic architectures. Proceedings of

the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engi-

neering, 209:265-272, 1995.

[78] Integrity in Automated Information Systems. National Computer Security

Center, September 1991. C Technical Report 79-91.

[79] George C. Necula. Proof-carrying code. In 2_th ACM Symposium on Princi-

ples of Programming Languages, pages 106-119, Paris, France, January 1997.

Association for Computing Machinery.

[80] George C. Necula and Peter Lee. Safe kernel extensions without run-time

checking. In 2nd Symposium on Operating Systems Design and Implementa-

tion (OSDI _96), pages 229-243, Seattle, WA, October 1996. Association for

Computing Machinery.

[81] Brian Oki, Manfred Pfluegl, Alex Siegel, and Dale Skeen. The Information

Bus--an architecture for extensible distributed systems. In Fourteenth A CM

Symposium on Operating System Principles, pages 58-68, Asheville, NC, De-

cember 1993. (ACM Operating Systems Review, Vol. 27, No. 5).

[82] Gerald J. Popek and David R. Farber. A model for verification of data security

in operating systems. Communications of the A CM, 21(9) :737-749, September
1978.

64 References

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

DO-178B: Software Considerations in Airborne Systems and Equipment Cer-

tification. Requirements and Technical Concepts for Aviation, Washington,

DC, December 1992. This document is known as EUROCAE ED-12B in Eu-

rope.

P. Richards. Timing properties of multiprocessor systems. Technical Report

TDB60-27, Tech. Operations Inc., Burlington, MA, August 1960.

A. W. Roscoe. CSP and determinism in security modelling. In Proceedings of

the Symposium on Security and Privacy, pages 114-127, Oakland, CA, May

1995. IEEE Computer Society.

A. W. Roscoe, J. C. P. Woodcock, and L. Wulf. Non-interference through

determinism. Journal of Computer Security, 4(1):27-53, 1996.

John Rushby. The design and verification of secure systems. In Eighth A CM

Symposium on Operating System Principles, pages 12-21, Asilomar, CA, De-

cember 1981. (ACM Operating Systems Review, Vol. 15, No. 5).

John Rushby. Proof of Separability--A verification technique for a class of

security kernels. In Proc. 5th International Symposium on Programming, pages

352-367, Turin, Italy, April 1982. Volume 137 of Lecture Notes in Computer

Science, Springer-Verlag.

John Rushby. Noninterference, transitivity, and channel-control security poli-

cies. Technical Report SRI-CSL-92-2, Computer Science Laboratory, SRI In-

ternational, Menlo Park, CA, December 1992.

John Rushby. Formal methods and the certification of critical systems. Tech-

nical Report SRI-CSL-93-7, Computer Science Laboratory, SRI International,

Menlo Park, CA, December 1993. Also issued under the title Formal Methods

and Digital Systems Validation for Airborne Systems as NASA Contractor

Report 4551, December 1993.

John Rushby. Formal methods and their role in the certification of critical

systems. Technical Report SRI-CSL-95-1, Computer Science Laboratory, SRI

International, Menlo Park, CA, March 1995. Also available as NASA Con-

tractor Report 4673, August 1995, and to be issued as part of the FAA Digital

Systems Validation Handbook (the guide for aircraft certification). Reprinted

in [97, pp. 1-42].

John Rushby. A foundation for security kernel verification. Technical report,

Computer Science Laboratory, SRI International, Menlo Park, CA, October

1995. Informal report.

References 65

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

John Rushby, editor. Dependable Computing for Critical Applications--7,

Dependable Computing and Fault Tolerant Systems, San Jose, CA, January

1999. IEEE Computer Society. To appear (page numbers refer to preliminary

proceedings).

John Rushby and David W. J. Stringer-Calvert. A less elementary tutorial

for the PVS specification and verification system. Technical Report SRI-CSL-

95-10, Computer Science Laboratory, SRI International, Menlo Park, CA,

June 1995. Revised, July 1996. Available, with specification files, at http:
//www.csl.sri. com/csl-95-10, html.

Marvin Schaefer, Barry Gold, Richard Linde, and John Scheid. Program con-

finement in KVM/370. In A CM National Conference, pages 404-410, Seattle,

WA, October 1977.

Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority inheritance

protocols: An approach to real-time synchronization. IEEE Transactions on

Computers, 39(9):1175-1185, September 1990.

Roger Shaw, editor. Safety and Reliability of Software Based Systems (Twelfth

Annual CSR Workshop), Bruges, Belgium, September 1995. Springer.

O. Sibert, P. Porras, and R. Lindell. The Intel 80x86 processor architecture:

Pitfalls for secure systems. In Proceedings of the Symposium on Security and

Privacy, pages 211-222, Oakland, CA, May 1995. IEEE Computer Society.

Andrew Simpson, Jim Woodcock, and Jim Davies. Safety through security. In

Proceedings of the Ninth International Workshop on Software Specification and

Design, pages 18-24, Ise-Shima, Japan, April 1998. IEEE Computer Society.

Andrew Clive Simpson. Safety through Security. PhD thesis, Oxford University

Computing Laboratory, 1996.

Sixteenth A CM Symposium on Operating System Principles, Saint-Malo,

france, October 1997. (ACM Operating Systems Review, Vol. 31, No. 5).

Oliver Spatscheck and Larry Peterson. Defending against denial of service

attacks in Scout. In Proceedings of the 3rd Usenix Symposium on Operat-

ing Systems Design and Implementation (OSDI), pages 59-72, New Orleans,

February 1999. Usenix and Association for Computing Machinery.

Christopher Temple. Avoiding the babbling-idiot failure in a time-triggered

communication system. In Fault Tolerant Computing Symposium 28, pages

218-227, Munich, Germany, June 1998. IEEE Computer Society.

66 References

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

JonathanT. Throstle. Modelinga fuzzytime system.In SSP'93[45],pages
82-89.

PauloVerissimo,Jos4Rufino,andLi Ming. Howhard is hardreal-timecom-
municationonfield-buses?In Fault Tolerant Computing Symposium 27, pages

112-121, Seattle, WA, June 1997. IEEE Computer Society.

Ben L. Di Vito. A model of cooperative noninterference for integrated modular

avionics. In Rushby [93], pages 251-268.

Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. A sound type system

for secure flow analysis. Journal of Computer Security, 4(2,3):167-187, 1996.

Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham.

Efficient software-based fault isolation. In Fourteenth A CM Symposium on

Operating System Principles, pages 203-216, Asheville, NC, December 1993.

(ACM Operating Systems Review, Vol. 27, No. 5).

D. G. Weber. Formal specification of fault-tolerance and its relation to com-

puter security. In Proceedings of the Fifth International Workshop on Software

Specification and Design, pages 273-277, Pittsburgh, PA, May 1989. Published

as ACM SIGSOFT Engineering Notes, Volume 14, Number 3.

Doug G. Weber. Fault tolerance as self-similarity. In Jan Vytopil, editor,

Formal Techniques in Real-Time and Fault-Tolerant Systems, Kluwer Inter-

national Series in Engineering and Computer Science, chapter 2, pages 33-49.

Kluwer, Boston, Dordecht, London, 1993.

Matthew M. Wilding, David S. Hardin, and David A. Greve. Invariant per-

formance: A statement of task isolation useful for embedded application inte-

gration. In Rushby [93], pages 269-282.

John C. Wray. An analysis of timing channels. In SSP'91 [44], pages 2-7.

Che-Fn Yu and Virgil D. Gligor. A specification and verification method for

the prevention of denial of service. IEEE Transactions on Software Engineer-

ing, 16(6):581-592, June 1990.

REPORT DOCUMENTATION PAGE FormApprov_
{?M[_ NR, ft7fH-ftlt:lt:l

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188),
Washington, DO 20,503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

June 1999 Contractor Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Partitioning in Avionics Architectures: Requirements, Mechanisms, and
Assurance C NAS 1-20334

6, AUTHOR(S)

John Rushby

7, PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

SRI International

Menlo Park, CA

9, SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Langley Research Center

Hampton, VA 23681-2199

WU 519-51-11-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

10, SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/CR- 1999-209347

11.SUPPLEMENTARYNOTES

Langley Technical Monitor: Ben Di Vito

Final Report

12a, DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 62 Distribution: Standard

Availability: NASA CASI (301) 621-0390

12b, DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Automated aircraft control has traditionally been divided into distinct "functions" that are implemented

separately (e.g., autopilot, autothrottle, flight management); each function has its own fault-tolerant computer

system, and dependencies among different functions are generally limited to the exchange of sensor and control

data. A by-product of this "federated" architecture is that faults are strongly contained within the computer

system of the function where they occur and cannot readily propagate to affect the operation of other functions.

More modern avionics architectures contemplate supporting multiple functions on a single, shared, fault-tolerant

computer system where natural fault containment boundaries are less sharply defined. Partitioning uses

appropriate hardware and software mechanisms to restore strong fault containment to such integrated
architectures.

This report examines the requirements for partitioning, mechanisms for their realization, and issues in providing

assurance for partitioning. Because partitioning shares some concerns with computer security, security models

are reviewed and compared with the concerns of partitioning.
14. SUBJECT TERMS

digital flight control, integrated modular avionics, avionics partitioning,

computer security, fault tolerance

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified

NSN 7540-01-2U0-5500

15. NUMBER OF PAGES

73
16. PRICE CODE

A04
20, LIMITATION

OF ABSTRACT

UL

Stanaara Form 29U (HEY. 2-U9)
Prescribed by ANSI Std. Z-39-18
298-102

